Applying Machine Learning in the Prediction and Identification of Children Affected by Prenatal Alcohol Exposure
应用机器学习来预测和识别受产前酒精暴露影响的儿童
基本信息
- 批准号:10018803
- 负责人:
- 金额:$ 17.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlcohol consumptionAlcoholsAlgorithmsAttention deficit hyperactivity disorderBehaviorBehavioralCharacteristicsChildClinicalComplexConsumptionCross-Sectional StudiesDataData SetData SourcesDevelopmentDiagnosisDiseaseDysmorphologyEarly DiagnosisEarly InterventionEarly identificationEpidemiologistEpidemiologyEvaluationFetal Alcohol ExposureFetal Alcohol Spectrum DisorderFoundationsFundingFutureGoalsGrantGrowthHeterogeneityInfantInterventionLeadLogistic RegressionsMachine LearningMeasuresMentorsMentorshipMethodologyModelingNational Institute on Alcohol Abuse and AlcoholismNeurodevelopmental DeficitNeuropsychologyNursery SchoolsNutritionalOutcomePatternPerinatalPopulationPregnancyPregnant WomenProcessProspective StudiesProviderResearchResearch PersonnelResearch TrainingSamplingSeminalTechniquesTestingTrainingUkraineUnited StatesWritingaccurate diagnosisagedalcohol exposureautism spectrum disorderbaseclinical Diagnosisdisabilityfetal diagnosisfirst gradeimprovedinfancyinnovationmachine learning algorithmmalformationmultidimensional dataneurodevelopmentnovel strategiesoffspringpredictive modelingprenatalprenatal exposureresearch clinical testingresponsible research conductskillssociodemographicssuccess
项目摘要
Project summary
Fetal alcohol spectrum disorders (FASD), which are caused by prenatal alcohol exposure, occur in up to 5% of
the population in the United States, and are associated with lifelong disability. There are multiple difficulties in
obtaining an accurate diagnosis of FASD, including subtlety of physical features and heterogeneity in
presentation. Consequently, FASD is grossly under-recognized, and the majority of affected children never
receive a diagnosis. If FASD could be diagnosed earlier and with more reliability, many years of beneficial
intervention would not be lost.
The objective of this research is to apply machine learning to high-dimensional data in well-characterized data
sets to predict or characterize children with FASD. The central hypothesis of this research is that the
application of machine learning will accurately predict and recognize FASD compared with expert clinical
diagnosis. To test this hypothesis, machine learning will be employed to: 1) characterize FASD based on the
presence of non-cardinal malformations, 2) establish multivariate predictors of FASD in preschool aged
children, and 3) identify diagnosis specific neurodevelopmental markers that distinguish alcohol related
neurodevelopmental deficits from neurodevelopmental deficits without prenatal exposure. Two secondary data
sources will be used in this proposal; a prospective study of 400 pregnant women and their offspring in
Ukraine (half of whom consumed high amounts of alcohol) with full clinical evaluations for FASD, and a cross-
sectional study of over 2,900 first grade children in four regions of the U.S., all with clinical FASD evaluations.
Upon successful completion of the proposed research, the expected contribution is for more accurate
prediction and recognition of children with FASD. The proposed research is innovative, as it represents a
departure from current practice by incorporating machine learning techniques into predictive models of FASD.
As a perinatal epidemiologist, I have a strong foundation in analytic techniques, and the advanced training in
machine learning will further enhance these skills. Additionally, the disease-focused training in dysmorphology
and neurodevelopment will provide a strong foundation to make significant contributions to the field of FASD
research. Finally, training and mentoring in grant writing and the responsible conduct of research will provide
a strong foundation to transition to an independent researcher. This proposed research builds on previous
NIAAA funded research by my interdisciplinary mentoring team, who are all strongly supportive of this
research and training plan.
This seminal application of machine learning to FASD research will demonstrate its capacity to predict and
identify affected children, ultimately leading to earlier intervention of children prenatally exposed to alcohol.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gretchen E. Bandoli其他文献
Gretchen E. Bandoli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gretchen E. Bandoli', 18)}}的其他基金
14/24 The Healthy Brain & Child Development National Consortium
14/24 健康的大脑
- 批准号:
10378364 - 财政年份:2021
- 资助金额:
$ 17.28万 - 项目类别:
14/24 The Healthy Brain & Child Development National Consortium
14/24 健康的大脑
- 批准号:
10661766 - 财政年份:2021
- 资助金额:
$ 17.28万 - 项目类别:
14/24 The Healthy Brain & Child Development National Consortium
14/24 健康的大脑
- 批准号:
10757271 - 财政年份:2021
- 资助金额:
$ 17.28万 - 项目类别:
14/24 The Healthy Brain & Child Development National Consortium
14/24 健康的大脑
- 批准号:
10494150 - 财政年份:2021
- 资助金额:
$ 17.28万 - 项目类别:
Reassessing FASD: Novel Approaches for Evaluating Exposure, Diagnosis and Outcomes in Children Prenatally Exposed to Alcohol
重新评估 FASD:评估产前接触酒精儿童的暴露、诊断和结果的新方法
- 批准号:
10204862 - 财政年份:2020
- 资助金额:
$ 17.28万 - 项目类别:
Reassessing FASD: Novel Approaches for Evaluating Exposure, Diagnosis and Outcomes in Children Prenatally Exposed to Alcohol
重新评估 FASD:评估产前接触酒精儿童的暴露、诊断和结果的新方法
- 批准号:
10376367 - 财政年份:2020
- 资助金额:
$ 17.28万 - 项目类别:
Applying Machine Learning in the Prediction and Identification of Children Affected by Prenatal Alcohol Exposure
应用机器学习来预测和识别受产前酒精暴露影响的儿童
- 批准号:
10475144 - 财政年份:2019
- 资助金额:
$ 17.28万 - 项目类别:
Applying Machine Learning in the Prediction and Identification of Children Affected by Prenatal Alcohol Exposure
应用机器学习来预测和识别受产前酒精暴露影响的儿童
- 批准号:
10245104 - 财政年份:2019
- 资助金额:
$ 17.28万 - 项目类别:
Applying Machine Learning in the Prediction and Identification of Children Affected by Prenatal Alcohol Exposure
应用机器学习来预测和识别受产前酒精暴露影响的儿童
- 批准号:
9805491 - 财政年份:2019
- 资助金额:
$ 17.28万 - 项目类别:
相似海外基金
The investigation of chronic alcohol consumption enhanced aging colon in elder mice and the mechanism of suppressed on aging colon tissues by sesame lignans continuous intake
长期饮酒促进老年小鼠结肠衰老的研究及持续摄入芝麻木脂素抑制结肠组织衰老的机制
- 批准号:
23K10904 - 财政年份:2023
- 资助金额:
$ 17.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of carcinogenesis and symptoms associated with alcohol consumption
致癌的分子机制和饮酒相关症状
- 批准号:
23K05734 - 财政年份:2023
- 资助金额:
$ 17.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Internal Sources of Minority Stress and Alcohol Consumption
少数群体压力和饮酒的内部根源
- 批准号:
10742318 - 财政年份:2023
- 资助金额:
$ 17.28万 - 项目类别:
Characterizing the Relationship Between Alcohol Consumption and Neuron-Derived Exosomal MicroRNA Cargo in an Adolescent-Young Adult Twin Cohort
青少年双胞胎队列中酒精消耗与神经元衍生的外泌体 MicroRNA 货物之间关系的表征
- 批准号:
10452928 - 财政年份:2022
- 资助金额:
$ 17.28万 - 项目类别:
Endocrine regulation of alcohol consumption and fear learning
饮酒和恐惧学习的内分泌调节
- 批准号:
10483780 - 财政年份:2022
- 资助金额:
$ 17.28万 - 项目类别:
The impact of friends sharing different modalities of alcohol-related social media content on alcohol consumption: A longitudinal examination of changes in content shared by social networks over time
朋友分享不同形式的酒精相关社交媒体内容对饮酒的影响:对社交网络分享内容随时间变化的纵向研究
- 批准号:
10534428 - 财政年份:2022
- 资助金额:
$ 17.28万 - 项目类别:
Cannabis' Impact on Alcohol Consumption: Integrating Laboratory and Ecological Momentary Assessment Methods
大麻对酒精消费的影响:整合实验室和生态瞬时评估方法
- 批准号:
10339931 - 财政年份:2022
- 资助金额:
$ 17.28万 - 项目类别:
Chronic alcohol consumption results in elevated Autotaxin levels that suppress anti-tumor immunity
长期饮酒会导致自分泌运动因子水平升高,从而抑制抗肿瘤免疫力
- 批准号:
10370159 - 财政年份:2022
- 资助金额:
$ 17.28万 - 项目类别:
Cannabis' Impact on Alcohol Consumption: Integrating Laboratory and Ecological Momentary Assessment Methods
大麻对酒精消费的影响:整合实验室和生态瞬时评估方法
- 批准号:
10595096 - 财政年份:2022
- 资助金额:
$ 17.28万 - 项目类别:
Technology-based assessments and intervention to reduce alcohol consumption and improve HIV viral suppression in the Florida Cohort
基于技术的评估和干预,以减少佛罗里达队列的饮酒量并改善艾滋病病毒抑制
- 批准号:
10707386 - 财政年份:2022
- 资助金额:
$ 17.28万 - 项目类别: