Applying Machine Learning in the Prediction and Identification of Children Affected by Prenatal Alcohol Exposure

应用机器学习来预测和识别受产前酒精暴露影响的儿童

基本信息

项目摘要

Project summary Fetal alcohol spectrum disorders (FASD), which are caused by prenatal alcohol exposure, occur in up to 5% of the population in the United States, and are associated with lifelong disability. There are multiple difficulties in obtaining an accurate diagnosis of FASD, including subtlety of physical features and heterogeneity in presentation. Consequently, FASD is grossly under-recognized, and the majority of affected children never receive a diagnosis. If FASD could be diagnosed earlier and with more reliability, many years of beneficial intervention would not be lost. The objective of this research is to apply machine learning to high-dimensional data in well-characterized data sets to predict or characterize children with FASD. The central hypothesis of this research is that the application of machine learning will accurately predict and recognize FASD compared with expert clinical diagnosis. To test this hypothesis, machine learning will be employed to: 1) characterize FASD based on the presence of non-cardinal malformations, 2) establish multivariate predictors of FASD in preschool aged children, and 3) identify diagnosis specific neurodevelopmental markers that distinguish alcohol related neurodevelopmental deficits from neurodevelopmental deficits without prenatal exposure. Two secondary data sources will be used in this proposal; a prospective study of 400 pregnant women and their offspring in Ukraine (half of whom consumed high amounts of alcohol) with full clinical evaluations for FASD, and a cross- sectional study of over 2,900 first grade children in four regions of the U.S., all with clinical FASD evaluations. Upon successful completion of the proposed research, the expected contribution is for more accurate prediction and recognition of children with FASD. The proposed research is innovative, as it represents a departure from current practice by incorporating machine learning techniques into predictive models of FASD. As a perinatal epidemiologist, I have a strong foundation in analytic techniques, and the advanced training in machine learning will further enhance these skills. Additionally, the disease-focused training in dysmorphology and neurodevelopment will provide a strong foundation to make significant contributions to the field of FASD research. Finally, training and mentoring in grant writing and the responsible conduct of research will provide a strong foundation to transition to an independent researcher. This proposed research builds on previous NIAAA funded research by my interdisciplinary mentoring team, who are all strongly supportive of this research and training plan. This seminal application of machine learning to FASD research will demonstrate its capacity to predict and identify affected children, ultimately leading to earlier intervention of children prenatally exposed to alcohol.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gretchen E. Bandoli其他文献

Gretchen E. Bandoli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gretchen E. Bandoli', 18)}}的其他基金

14/24 The Healthy Brain & Child Development National Consortium
14/24 健康的大脑
  • 批准号:
    10378364
  • 财政年份:
    2021
  • 资助金额:
    $ 17.71万
  • 项目类别:
14/24 The Healthy Brain & Child Development National Consortium
14/24 健康的大脑
  • 批准号:
    10661766
  • 财政年份:
    2021
  • 资助金额:
    $ 17.71万
  • 项目类别:
14/24 The Healthy Brain & Child Development National Consortium
14/24 健康的大脑
  • 批准号:
    10757271
  • 财政年份:
    2021
  • 资助金额:
    $ 17.71万
  • 项目类别:
14/24 The Healthy Brain & Child Development National Consortium
14/24 健康的大脑
  • 批准号:
    10494150
  • 财政年份:
    2021
  • 资助金额:
    $ 17.71万
  • 项目类别:
Reassessing FASD: Novel Approaches for Evaluating Exposure, Diagnosis and Outcomes in Children Prenatally Exposed to Alcohol
重新评估 FASD:评估产前接触酒精儿童的暴露、诊断和结果的新方法
  • 批准号:
    10204862
  • 财政年份:
    2020
  • 资助金额:
    $ 17.71万
  • 项目类别:
Reassessing FASD: Novel Approaches for Evaluating Exposure, Diagnosis and Outcomes in Children Prenatally Exposed to Alcohol
重新评估 FASD:评估产前接触酒精儿童的暴露、诊断和结果的新方法
  • 批准号:
    10376367
  • 财政年份:
    2020
  • 资助金额:
    $ 17.71万
  • 项目类别:
Applying Machine Learning in the Prediction and Identification of Children Affected by Prenatal Alcohol Exposure
应用机器学习来预测和识别受产前酒精暴露影响的儿童
  • 批准号:
    10475144
  • 财政年份:
    2019
  • 资助金额:
    $ 17.71万
  • 项目类别:
Applying Machine Learning in the Prediction and Identification of Children Affected by Prenatal Alcohol Exposure
应用机器学习来预测和识别受产前酒精暴露影响的儿童
  • 批准号:
    10018803
  • 财政年份:
    2019
  • 资助金额:
    $ 17.71万
  • 项目类别:
Applying Machine Learning in the Prediction and Identification of Children Affected by Prenatal Alcohol Exposure
应用机器学习来预测和识别受产前酒精暴露影响的儿童
  • 批准号:
    9805491
  • 财政年份:
    2019
  • 资助金额:
    $ 17.71万
  • 项目类别:

相似海外基金

Collaborative Research: Overlooked Oxidation of Aqueous Alcohols: Kinetics, Mechanism, and Relevance to Water Reuse
合作研究:被忽视的水醇氧化:动力学、机制以及与水回用的相关性
  • 批准号:
    2304861
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Continuing Grant
STTR Phase I: Development of Modular Reactors to Convert Methane to Alcohols at Low Temperatures
STTR 第一阶段:开发在低温下将甲烷转化为醇的模块化反应器
  • 批准号:
    2151256
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Standard Grant
Development of amine-dehydrogenase and lyase biocatalysts for the sustainable manufacturing of unnatural chiral amino acids and amino alcohols
开发胺脱氢酶和裂解酶生物催化剂,用于可持续生产非天然手性氨基酸和氨基醇
  • 批准号:
    2870226
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Studentship
Collaborative Research: Overlooked Oxidation of Aqueous Alcohols: Kinetics, Mechanism, and Relevance to Water Reuse
合作研究:被忽视的水醇氧化:动力学、机制以及与水回用的相关性
  • 批准号:
    2304860
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Development of Selective Reaction Schemes for Photoactivation of Alcohols
博士后奖学金:MPS-Ascend:醇光活化选择性反应方案的开发
  • 批准号:
    2316541
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Fellowship Award
Development of phosphorylation of alcohols in protein based on the structural modification of phosphoenolpyruvate
基于磷酸烯醇丙酮酸结构修饰的蛋白质醇磷酸化研究进展
  • 批准号:
    22KJ1152
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Nickel Cross-Coupling Cascades with α-Heteroatom Radicals to Prepare Sterically Hindered Alcohols and Amines
镍与α-杂原子自由基交叉偶联级联制备位阻醇和胺
  • 批准号:
    10604535
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
Towards a better understanding of the effect of the pentafluorosulfanyl group on the lipophilicity and acid/base properties of alcohols and amines
更好地了解五氟硫基对醇和胺的亲脂性和酸/碱性质的影响
  • 批准号:
    571856-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Alliance Grants
Pd-Catalyzed C(sp3)-H Functionalizations Directed by Free Alcohols and Boc-Protected Amines
由游离醇和 Boc 保护的胺引导的 Pd 催化 C(sp3)-H 官能化
  • 批准号:
    10606508
  • 财政年份:
    2022
  • 资助金额:
    $ 17.71万
  • 项目类别:
Facile One-Pot Reductive Deoxygenations of Alcohols and Carboxylic Acids Using Sulfuryl Fluoride
使用硫酰氟轻松进行醇和羧酸的一锅还原脱氧
  • 批准号:
    546996-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了