Functionalized Lipid Carriers for Nucleic-Acid and Drug Therapeutics
用于核酸和药物治疗的功能化脂质载体
基本信息
- 批准号:10242074
- 负责人:
- 金额:$ 29.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAcidsAdhesionsAlbumin-Stabilized Nanoparticle PaclitaxelBiologicalBiological AssayBiophysicsCancer cell lineCapsidCationsCell SurvivalCellsChargeChemicalsChemistryChemotherapy-Oncologic ProcedureClinical TrialsCodeCommunitiesComplexConeCustomCyclic PeptidesCytosolDNADataDependenceDevelopmentDistalDrug Delivery SystemsElectron MicroscopyElectrostaticsEncapsulatedEndosomesEngineeringExcisionExonsFluorescence MicroscopyGene DeliveryGene SilencingGenesGoalsHomingHospitalsHumanHydrophobicityHypersensitivityIn VitroIntronsKnowledgeLaboratoriesLigandsLipid BilayersLipidsLiposomesMalignant NeoplasmsMediatingMembraneMethodsMicellesModernizationNon-Viral VectorNucleic AcidsOrganellesOrganic ChemistryPaclitaxelPenetrationPeptidesPharmaceutical PreparationsPhaseProbabilityPropertyProteinsRNAReactionResearchResearch ActivityRoentgen RaysSafetyScienceShapesSmall Interfering RNASolidSolubilityStructureSynchrotronsTailTechniquesTestingTherapeuticTransfectionTumor TissueUntranslated RNAVesicleViral VectorVirusX ray diffraction analysisbasebiophysical analysisbiophysical propertiesbiophysical techniquescancer cellchemical propertycryogenicscytotoxiccytotoxicitydesigndisorder controlefficacy testingethylene glycolgene therapyhuman modelimmunogenicimmunogenicityin vivoliposome vectormalignant stomach neoplasmmouse modelnanoparticlenanoscalenovelnucleic acid deliverynucleic acid-based therapeuticsphysical propertytooltumoruptakevector
项目摘要
Project Summary/Abstract
The current level of research activity involving gene therapy with either synthetic vectors (carriers) or engineered viruses
is unprecedented. Liposomes are the most widely studied nonviral carriers worldwide for nucleic acid (NA) and drug
delivery applications. Cationic liposomes (CLs) are relatively safe nonviral vectors used in ongoing clinical trials. CLs
may either be complexed via electrostatic interactions with therapeutic NAs (anionic DNA or short interfering RNA) for
gene delivery and silencing, or used as vectors of potent cytotoxic hydrophobic drugs, encapsulated within their lipid
bilayer, in cancer therapeutics. Among the biggest advantages of nonviral vectors (over viral vectors which are currently
more efficient in in vivo settings) are their safety, their low immunogenicity and their ability to transfer entire genes
(containing coding and noncoding sequences) and regulatory sequences into cells (currently not feasible with engineered
viruses because of capsid size limitations). The development of nonviral lipid-based vectors with efficacy competitive
with viral vectors in vivo will require a mechanistic understanding of how synthetic vectors may be functionalized to
overcome the major intracellular hurdle of endosomal escape. Successful endosomal escape is required for release of
therapeutic nucleic acid within the cell cytosol and therefore maximum efficacy. The first aim of this research application
is to employ modern biophysical and synthetic approaches to the rational design of functionalized CL–NA nanoparticles
(NPs) with synergistic, complementary dual-function PEG-lipid and fusogenic components for optimized endosomal
escape. Modern methods of organic and solid phase chemistry will be employed to synthesize dual-function PEG-lipids
with cell targeting and endosome escaping properties. The second aim of this research application is to optimize efficacy
of a new class of CL-based carriers of the hydrophobic drug paclitaxel (PTXL) for cancer therapeutics. This will be
achieved by developing a mechanistic understanding of the relation between physical and chemical properties of the
carrier (i.e. size of the functionalized CL carrier, membrane spontaneous curvature, and lipid tail structure) and functional
efficacy (i.e. PTXL membrane solubility, cell uptake of vector and PTXL delivery leading to cytotoxicity against human
cancer cells). The structures of CL-based vectors of NAs and hydrophobic drugs will be characterized using cryogenic
electron microscopy and synchrotron x-ray diffraction techniques. The interactions between CL vectors and cell
organelles will be directly visualized with spinning disk confocal fluorescence microscopy. Their structures will be
correlated to their biological activity in human cancer cells. The broad, long-term objective of our research is to develop a
fundamental science base through mechanistic studies that will lead to the design and synthesis of nonviral vectors of
nucleic acids and hydrophobic drugs for gene and cancer therapeutics.
项目摘要/摘要
目前涉及合成载体(载体)或工程病毒的基因治疗的研究水平
是前所未有的。脂质体是全球研究最广泛的核酸(NA)和药物的非病毒载体
交付申请。阳离子脂质体(CLS)是正在进行的临床试验中使用的相对安全的非病毒载体。 CLS
可以通过静电相互作用与治疗性NAS(阴离子DNA或短干扰RNA)进行复合
基因输送和沉默,或用作封装在其脂质中的有效细胞毒性疏水药物的载体
双层,癌症治疗。非病毒载体的最大优势之一(与目前的病毒媒介相比
在体内设置中更有效)是它们的安全性,低免疫原性和转移整个基因的能力
(包含编码和非编码序列)和调节序列到细胞中(目前不可行
由于衣壳尺寸的限制)。具有有效竞争力的非病毒基基载体的开发
使用病毒载体在体内将需要机械理解合成矢量如何功能化到
克服内体逃生的主要细胞内障碍。成功释放需要成功的内体逃生
细胞细胞质内的治疗核酸,因此最大效率。该研究申请的第一个目的
是利用现代的生物物理和合成方法来官能化CL – NA纳米颗粒的理性设计
(NPS)具有协同,完整的双功能PEG脂质和融合成分,以优化内体
逃脱。现代有机和固相化学方法将用于合成双功能PEG脂质
具有细胞靶向和内体逃脱特性。该研究应用的第二个目的是优化效率
用于疏水药物紫杉醇(PTXL)的新型基于CL的基于CL的载体用于癌症治疗。这将是
通过对物理和化学特性之间的关系的机械理解来实现
载体(即功能化CL载体,膜赞助商和脂质尾巴结构的大小)和功能性
功效(即PTXL膜溶解度,载体的细胞摄取和PTXL递送,导致对人的细胞毒性
癌细胞)。 NAS和疏水性药物基于Cl的载体的结构将使用低温来表征
电子显微镜和同步X射线衍射技术。 Cl载体与细胞之间的相互作用
细胞器将通过旋转盘共聚焦荧光显微镜直接可视化。他们的结构将是
与它们在人类癌细胞中的生物学活性相关。我们研究的广泛,长期目标是开发
基本科学基础通过机械研究,将导致设计和合成非病毒载体
用于基因和癌症治疗的核酸和疏水药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CYRUS R SAFINYA其他文献
CYRUS R SAFINYA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CYRUS R SAFINYA', 18)}}的其他基金
Functionalized Lipid Carriers for Nucleic-Acid and Drug Therapeutics
用于核酸和药物治疗的功能化脂质载体
- 批准号:
10020420 - 财政年份:2018
- 资助金额:
$ 29.53万 - 项目类别:
Functionalized Lipid Carriers for Nucleic-Acid and Drug Therapeutics
用于核酸和药物治疗的功能化脂质载体
- 批准号:
9789048 - 财政年份:2018
- 资助金额:
$ 29.53万 - 项目类别:
STRETCHING THE LIMITS OF MEMBRANE CHARGE DENSITY USING DENDRIMER LIPIDS
使用树枝状脂质扩展膜电荷密度的极限
- 批准号:
8362446 - 财政年份:2011
- 资助金额:
$ 29.53万 - 项目类别:
SYNCHROTRON X-RAY STUDIES OF BIOMOLECULAR MATERIALS
生物分子材料的同步辐射 X 射线研究
- 批准号:
8362233 - 财政年份:2011
- 资助金额:
$ 29.53万 - 项目类别:
STERICALLY STABILIZED CATIONIC LIPID - DNA COMPLEXES USED IN GENE DELIVERY
空间稳定的阳离子脂质 - 用于基因传递的 DNA 复合物
- 批准号:
8362475 - 财政年份:2011
- 资助金额:
$ 29.53万 - 项目类别:
STRETCHING THE LIMITS OF MEMBRANE CHARGE DENSITY USING DENDRIMER LIPIDS
使用树枝状脂质扩展膜电荷密度的极限
- 批准号:
8169665 - 财政年份:2010
- 资助金额:
$ 29.53万 - 项目类别:
SYNCHROTRON X-RAY STUDIES OF BIOMOLECULAR MATERIALS
生物分子材料的同步辐射 X 射线研究
- 批准号:
8169977 - 财政年份:2010
- 资助金额:
$ 29.53万 - 项目类别:
SYNCHROTRON X-RAY STUDIES OF BIOMOLECULAR MATERIALS
生物分子材料的同步辐射 X 射线研究
- 批准号:
8170193 - 财政年份:2010
- 资助金额:
$ 29.53万 - 项目类别:
STRETCHING THE LIMITS OF MEMBRANE CHARGE DENSITY USING DENDRIMER LIPIDS
使用树枝状脂质扩展膜电荷密度的极限
- 批准号:
7956428 - 财政年份:2009
- 资助金额:
$ 29.53万 - 项目类别:
相似国自然基金
原位肟键交联透明质酸水凝胶防腹膜粘连及调节纤溶系统平衡机制研究
- 批准号:52203121
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
原位肟键交联透明质酸水凝胶防腹膜粘连及调节纤溶系统平衡机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
层粘连蛋白α1-海藻酸钠水凝胶促进胰岛类β细胞的形成及机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
控释单宁酸活性分子的温度敏感型凝胶及防治术后粘连的机制研究
- 批准号:
- 批准年份:2019
- 资助金额:34 万元
- 项目类别:地区科学基金项目
绿茶多酚EGCG通过67LR途径稳定动脉粥样硬化斑块的作用及其相关分子机制研究
- 批准号:81703213
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Nanostructured surfaces with improved hemocompatibility
具有改善血液相容性的纳米结构表面
- 批准号:
10686166 - 财政年份:2022
- 资助金额:
$ 29.53万 - 项目类别:
Nanostructured surfaces with improved hemocompatibility
具有改善血液相容性的纳米结构表面
- 批准号:
10510050 - 财政年份:2022
- 资助金额:
$ 29.53万 - 项目类别:
Functional assessment of TprC/D and TprK proteins of syphilis causing spirochete, Treponema pallidum
梅毒螺旋体、梅毒螺旋体 TprC/D 和 TprK 蛋白的功能评估
- 批准号:
10477191 - 财政年份:2021
- 资助金额:
$ 29.53万 - 项目类别:
Biodegradable and Biocompatible Piezoelectric Nanofiber Mat for Wound Dressing
用于伤口敷料的可生物降解和生物相容性压电纳米纤维垫
- 批准号:
10046001 - 财政年份:2020
- 资助金额:
$ 29.53万 - 项目类别:
Biodegradable and Biocompatible Piezoelectric Nanofiber Mat for Wound Dressing
用于伤口敷料的可生物降解和生物相容性压电纳米纤维垫
- 批准号:
10220853 - 财政年份:2020
- 资助金额:
$ 29.53万 - 项目类别: