Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
基本信息
- 批准号:10261532
- 负责人:
- 金额:$ 48.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-05 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAbdomenAcousticsAffectAnatomyAnimalsAreaCalibrationCancer PatientCaringCesarean sectionCharacteristicsClinicClinicalClinical ResearchClinical TreatmentDepositionDetectionDiagnostic ImagingDoseEffectivenessElementsExposure toFeedbackFinancial compensationGelGenerationsGoalsImageInvestigationIonizing radiationLasersLeadLinear Accelerator Radiotherapy SystemsLiverLocationMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of abdomenMalignant neoplasm of gastrointestinal tractMalignant neoplasm of liverMalignant neoplasm of pancreasMeasurementMeasuresMedical ImagingMethodsModelingMonitorMorphologic artifactsMotionNormal tissue morphologyOncologyOnline SystemsOpticsOrganOryctolagus cuniculusOutcomePancreasPatientsPatternPerformancePhysiologicalPilot ProjectsPre-Clinical ModelProcessPropertyRadiationRadiation Dose UnitRadiation OncologyRadiation PhysicsRadiation therapyReportingResolutionRoentgen RaysSafetyShapesSignal TransductionSystemTechnologyTestingThree-Dimensional ImagingTimeTissuesToxic effectTransducersTranslationsTreatment outcomeUltrasonographyUncertaintyVariantX-Ray Computed Tomographyabsorptionacoustic imaginganatomic imagingbasecancer sitecancer typecostcost effectivedetectordosimetryeffective therapyimage guidedimprovedin vivonoveloptimal treatmentsphantom modelphotoacoustic imagingradiation deliveryreal-time imagesrespiratoryresponseside effectsystems researchtomographytreatment planningtumortumor eradication
项目摘要
Radiotherapy can be a highly effective treatment for many types of cancers. A major impediment to achieving its
full curative promise is the current delivery process, where typically the originally planned tumor area is exposed
to a fixed pattern of ionizing radiation over time irrespective of target deformations, organ motion, or function. To
avoid misses, geometric uncertainties in this feedforward process are dealt with by increasing the planning
margin around the tumor, but of necessity result in unnecessary exposure of uninvolved tissue which can lead
to debilitating toxicities. We hypothesize that the unwanted radiation dose to normal tissues could be significantly
reduced by using a feedback system that would “know” the shape and location of the tumor as well as the location
and intensity of the irradiated dose during delivery. This framework would require the unique ability to
simultaneously image the absorbed dose and the targeted tumor anatomy during radiation delivery, which is not
possible with currently existing technologies.
A known phenomenon in radiation physics is the generation of acoustic waves due to thermal expansion of
a substance following the absorption of penetrating radiation. Detection of this radiation induced acoustic signal
from clinical treatment beams has been recently demonstrated but has not been clinically realized. That signal
exists “for free” in real time as a consequence of the treatment beam. The signal can be measured with
ultrasound detectors and processed to reveal the location and intensity of the deposited energy/dose.
Furthermore, ultrasound technologies have also long been established for medical imaging and monitoring of
tumor size, shape and location, without introducing ionizing radiation.
Therefore, we propose to combine measurements of radiation acoustics and ultrasound imaging in an
integrated system using advanced matrix array probes to determine in real-time the volumetric delivered
radiation dose with respect to that day’s tumor shape and location, and ultimately to optimize tumor targeting via
online feedback. The system will be optimized in phantoms and preclinical models. Then, its feasibility and
versatility will be tested for treatment of tumors in the liver and the pancreas, two aggressive cancer sites where
misplaced dose due to deformation and physiological motion not only compromises tumor eradication but also
affects vital functions in the patient and subsequent treatment outcomes.
Impact statement: We aim to implement new, safe, simple, cost effective technology and methods for online
guidance of radiotherapy delivery that can provide simultaneous tumor tracking and dose compensation
capabilities. These technologies will be evaluated in a pilot clinical study of liver and pancreatic cancers to
demonstrate feasibility and potentials for translation. If successful, this feedback technology will have a
significant impact on personalizing radiotherapy delivery and achieving optimal treatment outcomes.
放射治疗对于许多类型的癌症来说是一种非常有效的治疗方法。实现其目标的一个主要障碍
完全治愈的希望是当前的交付过程,通常最初计划的肿瘤区域会被暴露
随着时间的推移,电离辐射的固定模式,无论目标变形、器官运动或功能如何。到
避免遗漏,通过增加规划来处理此前馈过程中的几何不确定性
肿瘤周围的边缘,但必然会导致未受累组织不必要的暴露,从而导致
致使人衰弱的毒性。我们假设对正常组织的不必要的辐射剂量可能会显着增加
通过使用“知道”肿瘤的形状和位置以及位置的反馈系统来减少
以及分娩期间的照射剂量强度。该框架需要独特的能力
在放射治疗过程中同时对吸收剂量和目标肿瘤解剖结构进行成像,这不是
用目前现有的技术是可能的。
辐射物理学中的一个已知现象是由于热膨胀而产生声波
吸收穿透辐射后的物质。检测这种辐射引起的声信号
临床治疗光束最近已得到证实,但尚未在临床上实现。那个信号
由于治疗光束的作用,它实时“免费”存在。信号可以通过以下方式测量
超声波探测器并进行处理以揭示沉积能量/剂量的位置和强度。
此外,超声技术也早已用于医学成像和监测
肿瘤的大小、形状和位置,无需引入电离辐射。
因此,我们建议将辐射声学和超声成像的测量结合起来
集成系统使用先进的矩阵阵列探头实时确定输送的体积
相对于当天肿瘤形状和位置的辐射剂量,并最终通过以下方式优化肿瘤靶向
在线反馈。该系统将在体模和临床前模型中进行优化。那么它的可行性和
将测试治疗肝脏和胰腺肿瘤的多功能性,这两个侵袭性癌症部位
由于变形和生理运动导致的剂量错位不仅会影响肿瘤的根除,
影响患者的重要功能和后续治疗结果。
影响陈述:我们的目标是实施新的、安全的、简单的、具有成本效益的在线技术和方法
指导放射治疗的实施,可以同时提供肿瘤跟踪和剂量补偿
能力。这些技术将在肝癌和胰腺癌的试点临床研究中进行评估,以
展示翻译的可行性和潜力。如果成功的话,这种反馈技术将具有
对个性化放疗实施和实现最佳治疗结果产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Issam M. El Naqa其他文献
Issam M. El Naqa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Issam M. El Naqa', 18)}}的其他基金
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 48.96万 - 项目类别:
Cerenkov Multi-Spectral Imaging (CMSI) for Adaptation and Real-Time Imaging in Radiotherapy
用于放射治疗中适应和实时成像的切伦科夫多光谱成像 (CMSI)
- 批准号:
10080509 - 财政年份:2020
- 资助金额:
$ 48.96万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10416058 - 财政年份:2019
- 资助金额:
$ 48.96万 - 项目类别:
Federated Learning for Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景组学分析进行放射治疗最佳决策的联邦学习
- 批准号:
10417829 - 财政年份:2019
- 资助金额:
$ 48.96万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10669029 - 财政年份:2019
- 资助金额:
$ 48.96万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10299634 - 财政年份:2019
- 资助金额:
$ 48.96万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
9816658 - 财政年份:2019
- 资助金额:
$ 48.96万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10250778 - 财政年份:2019
- 资助金额:
$ 48.96万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10245972 - 财政年份:2018
- 资助金额:
$ 48.96万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
9594556 - 财政年份:2018
- 资助金额:
$ 48.96万 - 项目类别:
相似海外基金
Super-resolution 3D ultrasound tomography for material microstructure characterisation
用于材料微观结构表征的超分辨率 3D 超声断层扫描
- 批准号:
2815310 - 财政年份:2023
- 资助金额:
$ 48.96万 - 项目类别:
Studentship
CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
- 批准号:
2237309 - 财政年份:2023
- 资助金额:
$ 48.96万 - 项目类别:
Continuing Grant
PFI-RP: Towards Democratization of Ultrafast 3D Ultrasound Imaging
PFI-RP:迈向超快 3D 超声成像的民主化
- 批准号:
2329865 - 财政年份:2023
- 资助金额:
$ 48.96万 - 项目类别:
Continuing Grant
Machine Learning on 3D Ultrasound Images and Wearable IoT Data for Brace Treatment of Spinal Deformities
基于 3D 超声图像和可穿戴物联网数据的机器学习用于脊柱畸形的支架治疗
- 批准号:
RGPIN-2020-04415 - 财政年份:2022
- 资助金额:
$ 48.96万 - 项目类别:
Discovery Grants Program - Individual
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 48.96万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 48.96万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10670956 - 财政年份:2022
- 资助金额:
$ 48.96万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10509562 - 财政年份:2022
- 资助金额:
$ 48.96万 - 项目类别:
3D Ultrasound Vascular Flow Imaging System
3D超声血管血流成像系统
- 批准号:
547186-2020 - 财政年份:2022
- 资助金额:
$ 48.96万 - 项目类别:
Postgraduate Scholarships - Doctoral
3D ultrasound-based mechatronic guidance system
基于3D超声的机电一体化引导系统
- 批准号:
574470-2022 - 财政年份:2022
- 资助金额:
$ 48.96万 - 项目类别:
University Undergraduate Student Research Awards