3D Reconstruction and Analysis of Alzheimer's Patient Biopsy Samples to Map and Quantify Hallmarks of Pathogenesis and Vulnerability

阿尔茨海默病患者活检样本的 3D 重建和分析,以绘制和量化发病机制和脆弱性的标志

基本信息

  • 批准号:
    10594236
  • 负责人:
  • 金额:
    $ 31.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT This competitive supplement application requests funds to advance tools and methodology for the normalization of large-scale, 3D EM image volumes as a means to enhance the performance, reusability, and repeatability of high throughput artificial intelligence and machine learning (AI/ML) algorithms for automatic volume segmentation of brain cellular and subcellular ultrastructure. This work will be conducted in the context of an active research project that is advancing the acquisition, processing/refinement, and dissemination of large-scale 3D EM reference data derived from a remarkable collection of legacy biopsy brain samples from patients suffering from Alzheimer’s Disease (AD) (5R01AG065549). This active project is deeply rooted in the use of advance AI/ML technologies for delineating key ultrastructural constituents of neurons and glia exhibiting hallmarks of the progression of AD. It is organized to comprehensively target areas associated with plaques, tangles and brain vasculature, attending to locations where existing findings suggest cell and network vulnerability and contain molecular interactions suspected by some to underlie the initiation and progression of AD. Through this work, we are advancing the development and dissemination of fully trained neural-network models for volume segmentation to simplify (and reduce the costs associated with) community efforts to extract their own 3D geometries and associated morphometrics from this collection of AD reference data and similar repositories of neuronal 3D EM data. With this supplemental effort, we will develop, refine and disseminate a set of tools which allow for direct feedback and standardization of primary image quality, whereby benchmarks can be established so as to optimize the entire process holistically, giving a more rigorously defined target for image characteristics at time of image acquisition. The outcome of this work is to advance the use of transfer learning methods, facilitating repeatability and reuse of trained neural network models for scalable EM image segmentation.
项目总结/摘要 这一竞争性补充申请要求提供资金,以推进标准化的工具和方法 作为一种手段,以提高性能,可重用性和可重复性, 高吞吐量人工智能和机器学习(AI/ML)算法,用于自动卷取 脑细胞和亚细胞超微结构的分割。这项工作将在一个 一个积极的研究项目,正在推进收购,处理/完善,和大规模的传播 3D EM参考数据来源于患者遗留活检脑样本的显著收集 患有阿尔茨海默病(AD)(5 R 01 AG 065549)。这个活跃的项目深深植根于使用 先进的AI/ML技术,用于描绘神经元和神经胶质细胞的关键超微结构成分, AD进展的标志。它的组织是全面针对与斑块相关的区域, 缠结和脑血管系统,关注现有发现表明细胞和网络的位置 脆弱性和包含分子相互作用怀疑一些基础的启动和发展, AD.通过这项工作,我们正在推进经过充分训练的神经网络的开发和传播。 用于卷分割的模型,以简化(并降低相关成本)社区的工作, 他们自己的3D几何形状和相关的形态测量,从这个收集的AD参考数据和类似的 神经元3D EM数据库。通过这一补充努力,我们将制定、完善和传播一套 允许直接反馈和主要图像质量标准化的工具, 建立以全面优化整个流程,为图像提供更严格定义的目标 图像采集时的特征。这项工作的成果是促进迁移学习的使用 方法,促进可扩展EM图像的训练神经网络模型的可重复性和重用 细分

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark H Ellisman其他文献

Mark H Ellisman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark H Ellisman', 18)}}的其他基金

200keV, Energy Filtered, Intermediate-High Voltage Transmission Electron Microscope(IVEM)"
200keV、能量过滤、中高压透射电子显微镜(IVEM)"
  • 批准号:
    10642585
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
Scalable electron tomography for connectomics
用于连接组学的可扩展电子断层扫描
  • 批准号:
    10410742
  • 财政年份:
    2022
  • 资助金额:
    $ 31.6万
  • 项目类别:
Reversing Microglial Inflammarafts and Mitochondrial Dysfunction in Alzheimer's Disease
逆转阿尔茨海默病中的小胶质细胞炎症和线粒体功能障碍
  • 批准号:
    10607455
  • 财政年份:
    2022
  • 资助金额:
    $ 31.6万
  • 项目类别:
National Center for Microscopy and Imaging Research: A BRAIN Technology Integration and Dissemination Resource
国家显微镜和成像研究中心:大脑技术集成和传播资源
  • 批准号:
    10334513
  • 财政年份:
    2021
  • 资助金额:
    $ 31.6万
  • 项目类别:
National Center for Microscopy and Imaging Research: A BRAIN Technology Integration and Dissemination Resource
国家显微镜和成像研究中心:大脑技术集成和传播资源
  • 批准号:
    10544010
  • 财政年份:
    2021
  • 资助金额:
    $ 31.6万
  • 项目类别:
National Center for Microscopy and Imaging Research: A BRAIN Technology Integration and Dissemination Resource
国家显微镜和成像研究中心:大脑技术集成和传播资源
  • 批准号:
    10116087
  • 财政年份:
    2021
  • 资助金额:
    $ 31.6万
  • 项目类别:
The National Center for Microscopy and Imaging Research, a Community-wide Scientific Resource
国家显微镜和成像研究中心,社区范围的科学资源
  • 批准号:
    10399337
  • 财政年份:
    2020
  • 资助金额:
    $ 31.6万
  • 项目类别:
Advancing Multi-Color EM via Direct Detector-enabled 4D-STEM
通过支持直接检测器的 4D-STEM 推进多色 EM
  • 批准号:
    10031737
  • 财政年份:
    2020
  • 资助金额:
    $ 31.6万
  • 项目类别:
Advancing Multi-Color EM via Direct Detector-enabled 4D-STEM
通过支持直接检测器的 4D-STEM 推进多色 EM
  • 批准号:
    10795540
  • 财政年份:
    2020
  • 资助金额:
    $ 31.6万
  • 项目类别:
The National Center for Microscopy and Imaging Research, a Community-wide Scientific Resource
国家显微镜和成像研究中心,社区范围的科学资源
  • 批准号:
    10400847
  • 财政年份:
    2020
  • 资助金额:
    $ 31.6万
  • 项目类别:

相似海外基金

ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
  • 批准号:
    10935820
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
  • 批准号:
    10932514
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
  • 批准号:
    10704845
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
  • 批准号:
    10709085
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
Advanced Development of Gemini-DHAP
Gemini-DHAP的高级开发
  • 批准号:
    10760050
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10409385
  • 财政年份:
    2022
  • 资助金额:
    $ 31.6万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10710595
  • 财政年份:
    2022
  • 资助金额:
    $ 31.6万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10630975
  • 财政年份:
    2022
  • 资助金额:
    $ 31.6万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
  • 批准号:
    10710588
  • 财政年份:
    2022
  • 资助金额:
    $ 31.6万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10788051
  • 财政年份:
    2022
  • 资助金额:
    $ 31.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了