Opioid and SUD Data Enclave (O-SUDDEn): Bringing real-time data to the opioid crisis
阿片类药物和 SUD 数据飞地 (O-SUDDEn):为阿片类药物危机提供实时数据
基本信息
- 批准号:10590246
- 负责人:
- 金额:$ 205.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2025-09-29
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAlgorithmsAreaArtificial IntelligenceCensusesCessation of lifeCharacteristicsCodeCommunitiesCountryCountyDataData AnalysesData LinkagesData ReportingData SetData SourcesDecision MakingDoseDose-RateEnvironmentEnvironmental Risk FactorEventEvidence based practiceFamilyFentanylGenderGeographyHarm ReductionHealthHealth Insurance Portability and Accountability ActHumanIndividualInformaticsInformation SystemsInterventionJusticeLinkLocalesMachine LearningMedicalModelingNeighborhoodsOhioOpioidOutcomePatientsPatternPerformancePharmaceutical PreparationsPolicy MakerPredictive AnalyticsPreventionPrevention strategyRaceRecoveryReproducibilityResearchResearch PersonnelResource AllocationRespondentRural AppalachiaSecureSubstance Use DisorderSystemTimeUnited StatesUpdateUrineVulnerable Populationsbaseblack mencocaine usecommunity centerdashboarddata enclavedata harmonizationdata infrastructuredata integrationdata lakedata managementdata miningdata resourcedata toolsdemographicsdesigndrug testingexperiencehigh risk populationindexinginformatics toolinsightmachine learning methodnovelnovel strategiesopioid epidemicopioid misuseopioid useopioid use disorderoverdose deathpredictive modelingresponsesatisfactionsecondary analysissocial health determinantssociodemographicsstimulant misusestimulant usesubstance usesynthetic opioidtooltreatment strategyuser-friendlyworking group
项目摘要
ABSTRACT
The widespread availability of synthetic opioids (fentanyl) has fueled the rapidly rising rates of unintentional over
dose (OD) fatalities. Policy makers, state and local agencies, and investigators have focused on the Ohio
experience as a bellwether for the experiences of other states because of the representativeness of Ohio’s
demographics. The lack of timely geospatially-linked longitudinal data sources has impeded the ability of
communities and state agencies to pivot allocation of resources to regions where they are needed most. Limited
integration of environmental risk factors such as sociodemographic characteristics fail to support identification of
new targets for intervention or new approaches to emerging threats from changes in local drug supply. We
believe that agile data systems and informatics tools that can be used to demonstrate the utility of predictive
analytics and machine intelligence approaches on how to enable data-driven decision making will ultimately
prove translatable across the country and diverse localities. Our proposed Opioid and Substance Use Disorder
Data Enclave (O-SUDDEn) will provide a novel and transformative approach to support rigorous and
reproducible research on the opioid and substance use crises. O-SUDDEn will fill several existing gaps in data
infrastructure and prediction models that include machine learning, geospatial analyses, and community context.
The specific aims for O-SUDDEn are as follows: Aim 1: Data linkage with establishment of O-SUDDEn. We
will develop a geospatially-sensitive, individual-level secure data lake that integrates multiple disparate data
sources that meets the requirement of a coded-limited set under HIPAA. New data sources include real-time
individual-level longitudinal data from urine drug testing (UDT) and community contextual data based on the
Ohio Opportunity Index, an area-level social determinants of health developed and used by our team. We will
develop query and use tools for data harmonization and integration, prepare and release data sets for
dissemination and secondary data analyses; and facilitate secondary use of related administrative data to
generate evidence that informs targeted opioid interventions. Aim 2: Develop Predictive Models and
Surveillance algorithms. Geospatial and machine learning will be used to model the contribution of opioid,
cocaine, and stimulant use on OD, OD death and opioid use disorder/substance use disorder (OUD/SUD);
temporal relationship of real time data including UDT and demographic and contextual variables to identify high-
risk populations and subpopulations or geographic locales. We will validate model performances and predictive
power and then disseminate surveillance and forecasting algorithms through the O-SUDDEn portal for end-user
access. Aim 3: Deploy a human-centered platform and actional informatics. Applying co-design principles
with a human-centered work group consisting of end-user stakeholders (community, researchers, and state
policy makers/agencies), we will develop and deploy an end-user tailored portal and effective user-friendly tools
to provide actionable insights to inform opioid treatment and targeted harm reduction strategies.
摘要
合成阿片类药物(芬太尼)的广泛可用性助长了无意过度使用率的迅速上升。
剂量(OD)死亡。政策制定者、州和地方机构以及调查人员都把重点放在了俄亥俄州
由于俄亥俄州的代表性,
人口统计学由于缺乏及时的地理空间联系纵向数据源,
社区和国家机构将资源分配重点放在最需要的地区。有限
环境风险因素的整合,如社会人口特征,不能支持识别
制定新的干预目标或采取新的办法应对当地毒品供应变化带来的新威胁。我们
我认为,敏捷的数据系统和信息学工具,可用于证明预测的效用,
关于如何实现数据驱动决策的分析和机器智能方法最终将
可以在全国各地和不同的地方翻译。我们提出的阿片类药物和物质使用障碍
数据飞地(O-SUDDEn)将提供一种新颖的变革性方法,
关于阿片类药物和物质使用危机的可重复研究。O-SUDDEn将填补现有的几个数据空白
基础设施和预测模型,包括机器学习,地理空间分析和社区背景。
目标1:与建立可持续农业发展网络建立数据联系。我们
将开发一个地理空间敏感的、个人级别的安全数据湖,该数据湖集成了多个不同的数据
符合HIPAA下代码限制集要求的来源。新数据源包括实时
来自尿液药物检测(UDT)的个人水平纵向数据和社区背景数据,
俄亥俄州机会指数,由我们的团队开发和使用的地区级健康社会决定因素。我们将
开发查询和使用数据统一和整合工具,编制和发布数据集,
传播和辅助数据分析;并促进相关行政数据的辅助使用,
提供证据,为有针对性的阿片类药物干预提供信息。目标2:开发预测模型,
监控算法地理空间和机器学习将用于模拟阿片类药物的作用,
可卡因和兴奋剂使用对OD、OD死亡和阿片类药物使用障碍/物质使用障碍(OUD/SUD)的影响;
真实的时间数据的时间关系,包括UDT和人口统计和背景变量,以确定高
风险人群和亚人群或地理区域。我们将验证模型性能和预测
通过O-SUDDEn门户网站为最终用户提供监控和预测算法,然后进行传播
access.目标3:部署以人为中心的平台和信息化。应用协同设计原则
由最终用户利益相关者(社区、研究人员和国家)组成的以人为本的工作组
政策制定者/机构),我们将开发和部署一个为最终用户量身定制的门户网站和有效的用户友好工具
提供可操作的见解,为阿片类药物治疗和有针对性的减少伤害策略提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soledad A Fernandez其他文献
Soledad A Fernandez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soledad A Fernandez', 18)}}的其他基金
Shared Resource 03: Biostatistics (BSR)
共享资源 03:生物统计学 (BSR)
- 批准号:
10553335 - 财政年份:1997
- 资助金额:
$ 205.36万 - 项目类别:
Shared Resource 03: Biostatistics (BSR)
共享资源 03:生物统计学 (BSR)
- 批准号:
10333291 - 财政年份:1997
- 资助金额:
$ 205.36万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 205.36万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 205.36万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 205.36万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 205.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 205.36万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 205.36万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 205.36万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 205.36万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 205.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 205.36万 - 项目类别:
Research Fellowships