Decidual NK response to infection
蜕膜 NK 对感染的反应
基本信息
- 批准号:10623205
- 负责人:
- 金额:$ 83.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-19 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AwarenessBacteriaCell DeathCell secretionCellsConflict (Psychology)CytomegalovirusCytoplasmCytoplasmic GranulesCytoprotectionCytosolCytotoxic T-LymphocytesDataDeciduaDecidual CellFetal DistressFetal Growth RetardationFetal TissuesFetusFirst Pregnancy TrimesterGoalsGranzymeHumanImmuneImmune systemImmunityInfectionInvadedLigandsListeria monocytogenesLymphocyteLymphocyte SubsetMaternal-Fetal ExchangeMediatingMembraneMicrobeMusNanotubesNatural ImmunityNatural Killer CellsParasitesPathway interactionsPlacentaPlacentationPopulationPre-EclampsiaPredispositionPregnancyPregnancy ComplicationsPregnancy OutcomePremature BirthPremature LaborProcessRoleSideSpontaneous abortionStreptococcus Group BT-LymphocyteTestingTissuesToxoplasma gondiiTransgenic MiceTransgenic OrganismsVascular blood supplyVascular remodelingVillousVirusadaptive immunityantimicrobial peptidecell killingcell typeclinically significantcongenital anomalycytokinecytotoxicextracellularfetalfetal immunityfetal lossfetus cellfungusgranulysinimmune functionimmunological synapsein vivoinsightintrauterine infectionmaternal immune systemmicrobialmigrationnovelpathogenperforinperipheral bloodplacental infectionpreventreceptorresponsetransmission processtrophoblastunborn child
项目摘要
Decidual NK cells (dNK), the largest population of maternal immune cells at the maternal-fetal interface in the
first trimester of pregnancy, directly contact fetal extravillous trophoblasts (EVT), which invade the decidua to
remodel the vasculature to establish the blood supply to the placenta. The direct contact between dNK and EVT
challenges the maternal immune system, which must tolerate fetal cells, but still protect against infection. How
dNK protect the placenta and fetus from infection is not well understood. Most clinically significant infections of
the placenta and fetus are caused by intracellular pathogens (bacteria, parasites and viruses), for which killer
lymphocytes (NK and cytotoxic T lymphocytes) are key to systemic protective immunity. In the first trimester,
when infection has the most serious fetal consequences, there are few T cells in the decidua. Although dNK
have cytotoxic granules, express all the cytotoxic molecules, and kill conventional NK cell targets, their cytolytic
activity is reduced compared to peripheral blood NK cells. Moreover, although dNK form contacts with EVT, they
do not degranulate or kill
human cytomegalovirus-infected EVT. These findings emphasize the difficulties of
maternal immune cells to clear placental infections and prevent transmission of pathogens to the unborn child.
This proposal investigates a novel and exciting mechanism we recently discovered by which dNK kill L.
monocytogenes (Lm) inside trophoblasts, without killing the host cell. dNK express large amounts of granulysin
(GNLY), an antimicrobial peptide found both in cytotoxic granules and the cytosol that preferentially disrupts
microbial, relative to mammalian, membranes. Our preliminary data suggest that dNK establish nanotube
cytoplasmic connections to EVT. Without forming a conventional immune synapse or degranulating, dNK
transfer GNLY via nanotubes to EVT, but not other cytotoxic molecules (perforin, granzymes), which would kill
the host cell. This mechanism provides an elegant solution to the immune dilemma of pregnancy – defense
against infection while maintaining tolerance of the fetus and placenta. As far as we are aware, this is the first
evidence for an immune function of nanotubes. Nanotube transfer of GNLY and potentially other bioactive
molecules from dNK to EVT helps control intracellular infection and could regulate trophoblast functions. Our
goals are to confirm our preliminary data showing that intracellular microbes, but not fetal cells, are killed by
dNK transfer of GNLY, independently of perforin and granzymes; identify which infected maternal and fetal cells
in the placenta dNK protect and by what mechanism; explore the mechanism responsible for nanotube
formation, which molecules are transferred and which pathogens important in pregnancy are susceptible. The
protective role of GNLY and dNK will also be evaluated in human placental tissue explants and in mice by
comparing pregnancy outcomes following infection of GNLY-transgenic (Tg) and WT mice, which do not
express GNLY. These explant and in vivo studies will investigate three pathogens of pregnancy - Lm, Group B
Streptococci (GBS) and Toxoplasma gondii.
蜕膜 NK 细胞 (dNK) 是母体-胎儿界面上最大的母体免疫细胞群
妊娠早期,直接接触胎儿绒毛外滋养细胞(EVT),侵入蜕膜
重塑脉管系统以建立胎盘的血液供应。 dNK 和 EVT 之间的直接联系
挑战母体免疫系统,该系统必须耐受胎儿细胞,但仍能防止感染。如何
dNK 保护胎盘和胎儿免受感染的作用尚不清楚。最有临床意义的感染
胎盘和胎儿是由细胞内病原体(细菌、寄生虫和病毒)引起的,其杀手
淋巴细胞(NK 和细胞毒性 T 淋巴细胞)是全身保护性免疫的关键。在前三个月,
当感染对胎儿造成最严重的后果时,蜕膜中的 T 细胞很少。虽然dNK
具有细胞毒性颗粒,表达所有细胞毒性分子,并杀死常规 NK 细胞靶标,其溶细胞作用
与外周血 NK 细胞相比,活性降低。此外,虽然 dNK 与 EVT 建立了联系,但他们
不脱粒或杀死
人类巨细胞病毒感染的 EVT。这些发现强调了
母体免疫细胞清除胎盘感染并防止病原体传播给未出生的孩子。
该提案研究了我们最近发现的一种新颖且令人兴奋的机制,通过该机制 dNK 可以杀死 L.
滋养细胞内的单核细胞增生李斯特菌 (Lm),而不杀死宿主细胞。 dNK 表达大量颗粒溶素
(GNLY),一种在细胞毒性颗粒和细胞质中发现的抗菌肽,优先破坏
微生物,相对于哺乳动物,膜。我们的初步数据表明 dNK 建立了纳米管
细胞质与 EVT 的连接。不形成传统的免疫突触或脱颗粒,dNK
通过纳米管将 GNLY 转移至 EVT,但不转移其他细胞毒性分子(穿孔素、颗粒酶),否则会杀死
宿主细胞。这种机制为妊娠期的免疫困境提供了一个优雅的解决方案——防御
抵抗感染,同时保持胎儿和胎盘的耐受性。据我们所知,这是第一个
纳米管免疫功能的证据。 GNLY 和其他潜在生物活性的纳米管转移
从 dNK 到 EVT 的分子有助于控制细胞内感染并调节滋养层功能。我们的
目标是确认我们的初步数据,即细胞内微生物,而不是胎儿细胞,被杀死
GNLY 的 dNK 转移,独立于穿孔素和颗粒酶;确定哪些受感染的母体和胎儿细胞
胎盘中 dNK 的保护作用是什么?探索纳米管的机制
形成、哪些分子被转移以及哪些妊娠中重要的病原体容易受到影响。这
GNLY 和 dNK 的保护作用也将在人类胎盘组织外植体和小鼠中进行评估
比较 GNLY 转基因 (Tg) 和 WT 小鼠感染后的妊娠结局,
表达GNLY。这些外植体和体内研究将调查三种妊娠病原体 - Lm,B 组
链球菌 (GBS) 和弓形虫。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The NK cell receptor NKp46 recognizes ecto-calreticulin on ER-stressed cells.
- DOI:10.1038/s41586-023-05912-0
- 发表时间:2023-04
- 期刊:
- 影响因子:64.8
- 作者:Sen Santara, Sumit;Lee, Dian-Jang;Crespo, Angela;Hu, Jun Jacob;Walker, Caitlin;Ma, Xiyu;Zhang, Ying;Chowdhury, Sourav;Meza-Sosa, Karla F.;Lewandrowski, Mercedes;Zhang, Haiwei;Rowe, Marjorie;McClelland, Arthur;Wu, Hao;Junqueira, Caroline;Lieberman, Judy
- 通讯作者:Lieberman, Judy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Judy Lieberman其他文献
Judy Lieberman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Judy Lieberman', 18)}}的其他基金
Tumor-targeted disruption of mismatch repair in microsatellite stable colorectal cancer
微卫星稳定结直肠癌中错配修复的肿瘤靶向破坏
- 批准号:
10578049 - 财政年份:2022
- 资助金额:
$ 83.58万 - 项目类别:
Mechanistic elucidation of inflammasome assembly and regulation. Supplement: Testing drugs that curtail inflammasome activation to suppress SARS-CoV-2 pathogenesis
炎症小体组装和调节的机制阐明。
- 批准号:
10159600 - 财政年份:2020
- 资助金额:
$ 83.58万 - 项目类别:
Endogenous ligand of the NK activating receptor NKp46
NK 激活受体 NKp46 的内源性配体
- 批准号:
10116279 - 财政年份:2020
- 资助金额:
$ 83.58万 - 项目类别:
Granulysin, Granzymes and Perforin in Bacterial Immune Defense
细菌免疫防御中的颗粒溶素、颗粒酶和穿孔素
- 批准号:
9222706 - 财政年份:2016
- 资助金额:
$ 83.58万 - 项目类别:
Control of placental infection by decidual NK cell secreted granulysin
蜕膜NK细胞分泌颗粒溶素控制胎盘感染
- 批准号:
9236206 - 财政年份:2016
- 资助金额:
$ 83.58万 - 项目类别:
Control of placental infection by decidual NK cell secreted granulysin
蜕膜NK细胞分泌颗粒溶素控制胎盘感染
- 批准号:
9092639 - 财政年份:2016
- 资助金额:
$ 83.58万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 83.58万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 83.58万 - 项目类别:
Research Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
- 批准号:
23K25843 - 财政年份:2024
- 资助金额:
$ 83.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
- 批准号:
2349218 - 财政年份:2024
- 资助金额:
$ 83.58万 - 项目类别:
Standard Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 83.58万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 83.58万 - 项目类别:
Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
- 批准号:
2468773 - 财政年份:2024
- 资助金额:
$ 83.58万 - 项目类别:
Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 83.58万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 83.58万 - 项目类别:
Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 83.58万 - 项目类别:
Continuing Grant














{{item.name}}会员




