DEVELOPMENTAL MULTIMODAL IMAGING OF NEUROCOGNITIVE DYNAMICS (DEV-MIND)
神经认知动力学发育多模态成像 (DEV-MIND)
基本信息
- 批准号:10624903
- 负责人:
- 金额:$ 109.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-19 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdoptionAgeAlgorithmsAmendmentAttentionBehaviorBehavioralBehavioral ParadigmBiologicalBiological AssayBrainBrain MappingChildhoodClassificationCognitiveCognitive ScienceCollectionCustomDataDevelopmentDiffusion Magnetic Resonance ImagingDimensionsFunctional Magnetic Resonance ImagingGenesGeneticGenetic studyGenomicsGoalsImageImage AnalysisIndividualKnowledgeLongitudinal StudiesMagnetic Resonance ImagingMagnetoencephalographyMapsMeasuresMental disordersMethodsModalityMonitorMultimodal ImagingNeurobiologyNeurocognitiveOutputPatternPediatric cohortPerceptionPerformancePhysiologyProcessPsychiatryPubertyRequest for ProposalsResearchResearch DesignResearch Domain CriteriaResearch PersonnelResolutionResourcesSamplingShort-Term MemorySignal TransductionStructureTechnologyTestingThinnessTranslational ResearchValidationWorkalgorithm developmentanalytical methodbehavior measurementbrain basedcognitive controlcognitive systemcognitive taskcognitive testingdata fusiondata integrationdata-driven modelexperiencegenetic analysisimprovedindexinginnovationinstrumentationlongitudinal designmotor controlmultimodal datamultimodal neuroimagingmultimodalityneuralneural circuitneuroimagingresponse
项目摘要
Project Summary/Abstract
The Research Domain Criteria (RDoC) project initiated a framework for developing research classifications
based on functional dimensions emerging from translational research on genes, behaviors, circuits, and other
cognitive-biological parameters. Almost a decade later, RDoC has grown into a matrix consisting of functional
domains (e.g., cognitive systems), domain-specific constructs (e.g., attention, perception), and units of analysis
for measuring each construct (e.g., physiology, behavior, genes, etc.). Numerous studies have contributed to
defining each construct in terms of cognitive-biological parameters, and while these efforts have been broadly
successful, the dimensional RDoC constructs themselves remain largely unvalidated.
This lack of adequate validation is central to RFA-MH-19-242, which requests proposals that “perform unbiased
data-driven validation of existing constructs that may involve merging, subdividing, or hierarchically organizing
them by integrating data between and within constructs.” Specifically, the RFA calls for studies that use “multiple
behavioral tasks and levels of analysis per construct,” “multimodal data fusion … to unbiasedly classify and
compare constructs,” and “data-driven definitions of constructs that involve structural and functional data on
how brain states, networks, circuit dynamics, and hierarchies in the signals relate to outputs from task-based
assays.” The RFA also encourages the use of “accelerated longitudinal designs, with a particular emphasis on
development … and cutting-edge computational approaches to classify, predict, and explain developmental
trajectories.” The Developmental Multimodal Imaging of Neurocognitive and (Epi)genomic Dynamics (Dev-
MIND) Consortium responds to this call with an innovative, large-scale developmental multimodal neuroimaging
study that will leverage previously-developed longitudinal pediatric cohorts and data fusion algorithms that this
team established through the NSF-supported Dev-Cog project. Specifically, Dev-MIND will evaluate the
unitarity and potential hierarchical structure of three constructs within the cognitive systems domain (i.e.,
attention, cognitive control, and working memory) using a battery of custom cognitive tasks, multimodal
imaging, (epi)genomic analysis, an accelerated longitudinal design, and data-driven similarity metrics for
construct validation testing. Our neuroimaging approach will include dynamic functional mapping based on
magnetoencephalography (MEG), high-resolution volumetric MRI analyses based on multimodal parcellation,
and functional MRI (fMRI) for whole-brain dynamic functional connectivity. These neuroimaging and behavioral
performance metrics will also be combined with (epi)genetic data to identify covariance between genomic,
cognitive, and neural activity patterns. Such data-driven approaches will enable classification and prediction of
developmental trajectories per construct, and are central to the goals of computational psychiatry. In sum, this
project brings together leading investigative teams, an array of state-of-the-art neuroimaging technology, and
cutting-edge analytical methods to perform unbiased, data-driven validation of existing RDoC constructs.
项目总结/摘要
研究领域标准(RDoC)项目启动了一个研究分类框架
基于对基因、行为、电路等的转化研究中出现的功能维度,
认知生物学参数近十年后,RDoC已经发展成为一个由功能性
域(例如,认知系统),域特定构造(例如,注意力、感知)和分析单位
为了测量每个构造(例如,生理学、行为、基因等)。许多研究都有助于
根据认知生物学参数定义每个结构,虽然这些努力已经广泛地
虽然成功,但维度RDoC构建本身在很大程度上仍然未经验证。
这种缺乏充分验证的情况是RFA-MH-19-242的核心,它要求提案“执行无偏差
现有结构的数据驱动验证,可能涉及合并、细分或分层组织
通过在结构之间和结构内部集成数据来实现。”特别是,RFA呼吁使用“多个”的研究,
行为任务和每个结构的分析水平,”“多模式数据融合.
比较结构,”和“涉及结构和功能数据的结构的数据驱动的定义,
大脑状态、网络、电路动力学和信号中的层次结构如何与基于任务的输出相关,
assays.”RFA还鼓励使用“加速纵向设计,特别强调
发展......和尖端的计算方法来分类,预测和解释发展
轨迹”神经认知和(Epi)基因组动力学的发育多模态成像(Dev-
MIND)联盟响应这一呼吁,推出了一种创新的、大规模的发育多模式神经成像技术,
这项研究将利用先前开发的纵向儿科队列和数据融合算法,
通过NSF支持的Dev-Cog项目建立的团队。具体来说,Dev-MIND将评估
认知系统领域内三个构造的统一性和潜在的层次结构(即,
注意力、认知控制和工作记忆),使用一系列自定义认知任务,多模式
成像、(epi)基因组分析、加速纵向设计和数据驱动的相似性度量,
结构确认测试。我们的神经影像学方法将包括动态功能映射,
脑磁图(MEG),基于多模态分割的高分辨率体积MRI分析,
以及全脑动态功能连接的功能性MRI(fMRI)。这些神经成像和行为
性能度量也将与(EPI)遗传数据结合以识别基因组之间的协方差,
认知和神经活动模式。这种数据驱动的方法将使分类和预测
每个结构的发展轨迹,并且是计算精神病学目标的核心。总之,这
该项目汇集了领先的调查团队,一系列最先进的神经成像技术,
先进的分析方法,对现有的RDoC结构进行无偏的、数据驱动的验证。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hippocampal and parahippocampal volumes vary by sex and traumatic life events in children
- DOI:10.1503/jpn.190013
- 发表时间:2020-07-01
- 期刊:
- 影响因子:4.3
- 作者:Badura-Brack, Amy S.;Mills, Mackenzie S.;Wilson, Tony W.
- 通讯作者:Wilson, Tony W.
Troubled Hearts: Association Between Heart Rate Variability and Depressive Symptoms in Healthy Children.
- DOI:10.1007/s10484-020-09488-7
- 发表时间:2020-12
- 期刊:
- 影响因子:3
- 作者:Gleichmann DC;Solis I;Janowich JR;Wang YP;Calhoun VD;Wilson TW;Stephen JM
- 通讯作者:Stephen JM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tony W Wilson其他文献
Tony W Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tony W Wilson', 18)}}的其他基金
Suppression of Pathological Spontaneous Cortical Dynamics and Inflammation in NeuroHIV
NeuroHIV 病理性自发皮质动力学和炎症的抑制
- 批准号:
10590619 - 财政年份:2022
- 资助金额:
$ 109.8万 - 项目类别:
Suppression of Pathological Spontaneous Cortical Dynamics and Inflammation in NeuroHIV
NeuroHIV 病理性自发皮质动力学和炎症的抑制
- 批准号:
10472343 - 财政年份:2022
- 资助金额:
$ 109.8万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 109.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 109.8万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 109.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 109.8万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 109.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 109.8万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 109.8万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 109.8万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 109.8万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 109.8万 - 项目类别:
Standard Grant