Biomedical Informatics and Data Science Training Program (BIDS-TP)

生物医学信息学和数据科学培训计划(BIDS-TP)

基本信息

  • 批准号:
    10626109
  • 负责人:
  • 金额:
    $ 42.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

This is a new application to support a novel Biomedical Informatics and Data Science Training Program (BIDS-TP) at the University of Michigan (UM). The overarching goal of the BIDS-TP is to train a cadre of data- savvy, computationally-skilled, and highly-motivated biomedical scholars in an intellectually-stimulating environment using an effective competency-based curriculum. To enhance their scientific, clinical, and translational abilities, all BIDS-TP students will be trained in collecting, managing, processing, interrogating, and analyzing large amounts of complex high-dimensional biomedical information with rigor and transparency. Throughout the 5-year funding cycle, the Program will annually support 12 Fellows (6-Year 1 and 6- Year 2). Program participants will also include additional 10 Trainees that are fully-engaged, but funded by other mechanisms. The BIDS-TP program represents a unique collaboration between the UM’s Department of Computational Medicine and Bioinformatics (DCMB) and the Michigan Institute for Data Science (MIDAS). This partnership will provide immersive synergistic activities, translational education, transdisciplinary research projects, co-mentoring, and career development for all BIDS-TP Fellows and Trainees. Feeder graduate programs with eligible pre-doctoral trainees include DCMB and MIDAS doctoral students from engineering, mathematics, statistics, public health, and information sciences. Thirty-six UM faculty members from 6 UM Schools and Colleges will provide breadth and depth of scholarly research, co-mentoring, career coaching, and student-specific curriculum development. The BIDS-TP curriculum requires all trainees to complete the add-on graduate data science certificate program, and to actively participate in BIDS-TP workshops, seminars, and short-courses on biomedical informatics, health analytics, and computational data science. Capitalizing on the extensive database of successful DCMB, MIDAS, and Rackham Graduate School alumni, the Program will support professional networking, practical career mentorship, employment and career opportunities to promote the next generation of biomedical and health data science leaders. All scholars will be encouraged to focus their energy to design rigorous experiments, and develop effective techniques to tackle critical challenges, address unmet needs, and bridge scientific knowledge gaps. The strong, interdisciplinary, and trainee-mentor tailored curriculum plans will facilitate trainee’s growth, employability, and positioning to contribute to the NIH mission to discover, model, understand and treat complex human disorders. BIDS-TP will increase the capacity, ability, and efficacy of the US workforce to address known and unexpected biomedical, health and environmental challenges using advanced bioinformatics and data science techniques. As a premiere global institution, UM is dedicated to research, education and training of biomedical and data science graduate students. There are a number of complementary and synergistic UM activities that will support the BIDS-TP trainees and mentors in fertilizing interdisciplinary, collaborative, and cutting edge research.
这是一个支持新的生物医学信息学和数据科学培训计划的新应用 (BIDS-TP),密歇根大学(UM)。BIDS-TP的首要目标是培训一批数据骨干- 精明、精通计算和高度上进的生物医学学者在一个智力刺激的 使用有效的以能力为基础的课程的环境。以提高他们的科学、临床和 翻译能力,所有BIDS-TP学生将接受收集、管理、处理、讯问、 对大量复杂的高维生物医学信息进行严谨透明的分析。 在整个5年筹资周期中,该方案每年将支持12名研究员(6年1期和6年期)。 第二年)。计划参与者还将包括另外10名完全投入但由 其他机制。BIDS-TP计划代表了UM部门之间的独特合作 计算医学和生物信息学(DCMB)和密歇根数据科学研究所(MIDAS)。这 合作伙伴关系将提供身临其境的协同活动、翻译教育、跨学科研究 为所有投标人提供项目、共同指导和职业发展-TP研究员和实习生。支线毕业生 符合条件的博士前实习生项目包括DCMB和MIDAS工程学博士生, 数学、统计学、公共卫生和信息科学。来自6个UM的36名UM教职员工 学校和学院将提供广度和深度的学术研究,共同指导,职业指导,以及 针对学生的课程开发。BIDS-TP课程要求所有学员完成附加课程 研究生数据科学证书计划,并积极参加BIDS-TP研讨会和研讨会,以及 生物医学信息学、健康分析和计算数据科学的短期课程。 利用成功的DCMB、MIDAS和Rackham研究生院的广泛数据库 校友,该计划将支持职业网络、实用的职业指导、就业和职业生涯 促进下一代生物医学和健康数据科学领导者的机会。所有的学者都会 鼓励他们集中精力设计严谨的实验,并开发有效的技术来解决 关键挑战,解决未得到满足的需求,并弥合科学知识差距。强大的、跨学科的、 学员-导师定制的课程计划将促进学员的成长、就业能力和定位,以 为美国国立卫生研究院发现、建模、理解和治疗复杂人类疾病的使命做出贡献。出价-TP将 提高美国员工的能力、能力和效率,以应对已知和意外的生物医学、 使用先进的生物信息学和数据科学技术应对健康和环境挑战。作为一名 首屈一指的全球机构,UM致力于生物医学和数据科学的研究、教育和培训 研究生。有一些互补性和协同性的UM活动将支持 BIDS-TP在促进跨学科、协作和前沿研究方面的实习生和导师。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation.
Protocol for using Ciclops to build models trained on cross-platform transcriptome data for clinical outcome prediction.
  • DOI:
    10.1016/j.xpro.2022.101583
  • 发表时间:
    2022-09-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chou, Elysia;Zhang, Hanrui;Guan, Yuanfang
  • 通讯作者:
    Guan, Yuanfang
The clusters of health-risk behaviours and mental wellbeing and their sociodemographic correlates: a study of 15,366 ASEAN university students.
  • DOI:
    10.1186/s12889-022-14233-2
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
DataSifter II: Partially synthetic data sharing of sensitive information containing time-varying correlated observations.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ivo D Dinov其他文献

Ivo D Dinov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ivo D Dinov', 18)}}的其他基金

Biomedical Informatics and Data Science Training Program (BIDS-TP)
生物医学信息学和数据科学培训计划(BIDS-TP)
  • 批准号:
    10426165
  • 财政年份:
    2021
  • 资助金额:
    $ 42.44万
  • 项目类别:
Biomedical Informatics and Data Science Training Program (BIDS-TP)
生物医学信息学和数据科学培训计划(BIDS-TP)
  • 批准号:
    10204560
  • 财政年份:
    2021
  • 资助金额:
    $ 42.44万
  • 项目类别:
Methods & Analytics Core
方法
  • 批准号:
    8821268
  • 财政年份:
  • 资助金额:
    $ 42.44万
  • 项目类别:
Integrative Biostatistics and Informatics Core
综合生物统计学和信息学核心
  • 批准号:
    9755416
  • 财政年份:
  • 资助金额:
    $ 42.44万
  • 项目类别:
Methods & Analytics Core
方法
  • 批准号:
    9110751
  • 财政年份:
  • 资助金额:
    $ 42.44万
  • 项目类别:
Methods & Analytics Core
方法
  • 批准号:
    9297122
  • 财政年份:
  • 资助金额:
    $ 42.44万
  • 项目类别:
Biostatistics and Data Management Core
生物统计和数据管理核心
  • 批准号:
    9329505
  • 财政年份:
  • 资助金额:
    $ 42.44万
  • 项目类别:
Biostatistics and Data Management Core
生物统计和数据管理核心
  • 批准号:
    9130286
  • 财政年份:
  • 资助金额:
    $ 42.44万
  • 项目类别:
Integrative Biostatistics and Informatics Core
综合生物统计学和信息学核心
  • 批准号:
    8975330
  • 财政年份:
  • 资助金额:
    $ 42.44万
  • 项目类别:
Biostatistics and Data Management Core
生物统计和数据管理核心
  • 批准号:
    8882618
  • 财政年份:
  • 资助金额:
    $ 42.44万
  • 项目类别:

相似海外基金

SBIR Phase I: Scalable, on-demand, research-based, help-seeking innovation for learners in virtual and recorded training programs
SBIR 第一阶段:通过虚拟和录制的培训项目为学习者提供可扩展、按需、基于研究、寻求帮助的创新
  • 批准号:
    2151406
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
Development and evaluation of training programs for students engaged in teaching assistants at universities
高校助教学生培养方案的制定与评估
  • 批准号:
    23K02511
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Education DCL: EAGER: Developing Sector-specific Cybersecurity Training Programs: What are the Benefits to Students and Employers?
教育 DCL:EAGER:制定针对特定行业的网络安全培训计划:对学生和雇主有什么好处?
  • 批准号:
    2335748
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Standard Grant
Development of Teacher Training Programs to Promote School Safety
制定教师培训计划以促进学校安全
  • 批准号:
    23K02056
  • 财政年份:
    2023
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Elementary Programming Education Practices and Construction of Training Programs to foster AI Literacy
开发基础编程教育实践并构建培训项目以培养人工智能素养
  • 批准号:
    22K02575
  • 财政年份:
    2022
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Analysis of Japanese High School EFL Learner Interaction: Developing Meaningful Teacher Training Programs
日本高中 EFL 学习者互动分析:制定有意义的教师培训计划
  • 批准号:
    22K00755
  • 财政年份:
    2022
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Program development and analysis of human resource training programs for highly specialized patient safety managers
高度专业化的患者安全管理人员人力资源培训计划的计划开发和分析
  • 批准号:
    22K10413
  • 财政年份:
    2022
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Perceptions of English Dyslexia and its Formation Process in College English Teacher Training Programs
大学英语教师培训中对英语阅读障碍的认知及其形成过程
  • 批准号:
    21K00737
  • 财政年份:
    2021
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Expanding program evaluation capacity and enhancing training programs through alumni perspectives
通过校友视角扩大项目评估能力并加强培训项目
  • 批准号:
    10592969
  • 财政年份:
    2021
  • 资助金额:
    $ 42.44万
  • 项目类别:
Group-supervised neuromuscular training programs in the treatment of soldiers with musculoskeletal disorders - A randomized controlled trial
治疗患有肌肉骨骼疾病的士兵的团体监督神经肌肉训练计划 - 一项随机对照试验
  • 批准号:
    454991
  • 财政年份:
    2021
  • 资助金额:
    $ 42.44万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了