Regulation of Macromolecular Transport Through Plasmodesmata
通过胞间连丝调节大分子运输
基本信息
- 批准号:7923558
- 负责人:
- 金额:$ 19.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:BindingCellsCodeCommunicationDevelopmentEnzymesGlycineGoalsHandInfectionKnock-outMolecularMorphogenesisMovementNeckPathway interactionsPeptide HydrolasesPermeabilityPhosphorylationPlant VirusesPlantsPlasmodesmataProtein KinaseProteinsRegulationRegulatory PathwayRelaxationResearchResistanceRoleRouteSphincterStagingSystemTissuesTobacco Mosaic VirusVirusWorkcallosegraspintercellular connectionplant growth/developmentpositional cloningprotein transportresearch studytool
项目摘要
DESCRIPTION (provided by applicant): The proposed research aims to study regulation of macromolecular transport through plant intercellular connections, the plasmodesmata (PD). PD interconnect most cells within a mature plant and are critical for maintaining and regulating communication within and between different plant tissues. To examine the mechanism(s) by which the control of PD transport occurs, we exploit plant viruses, pirates of plasmodesmata, that move between host cells through these channels. For widespread infection, plant viruses must move from the initially infected cell to its surrounding cells. Because PD are the only connections between adjoining plant cells, plant viruses use these channels as their major routes of passage from cell to cell. PD transport of Tobacco mosaic virus, one of the best studied plant viruses, occurs with the help of a single virally-coded factor, the movement protein (MP). MP, therefore, represents a powerful molecular tool to study macromolecular transport through PD. In the proposed research, we shall continue to utilize this experimental approach, focusing on one of the most intriguing, yet poorly understood, aspects of PD transport - its regulation. The need to tightly control PD transport is inherent in its central role during plant-virus interactions as well as during normal plant development and morphogenesis. The molecular mechanisms by which such PD transport control is achieved remain largely unknown. In the current project, we have isolated several plant factors that are involved in these regulatory pathways, likely functioning as "checkpoints" of distinct stages of PD transport. The planned experiments will continue and expand this research direction. Specifically, each of the following two aims of the proposed work will seek to study a different aspect of PD regulation, together contributing toward a single goal of understanding of the molecular mechanisms that control PD transport. I. Differential phosphorylation of MP as an "On/Off' switch of PD transport. We have identified an ER-associated protein kinase (ERPK) that specifically phosphorylates MP at the Ser-37 residue, activating its PD-gating activity. Earlier, we also identified a PD-associated protein kinase (PDPK) that phosphorylates MP at its Ser-258, Thr-261, and Ser-265 residues and acts as a negative regulator of the MP ability to gate PD. Thus, ERPK and PDPK represent regulatory "checkpoints" for MP transport through PD. Here, we shall further study the effects of these two enzymes on MP (e.g., recognition of and targeting to PD and alterations in the a-helical and protease-resistant domains of MP thought to be involved in its PD targeting and gating activities) and on developmental regulation of PD permeability, identify and initially characterize their cellular substrates, and use reverse genetics to determine the phenotypic effects of the ERPK and PDPK knockouts/knockdowns on PD transport of plant viruses and cellular proteins. II. Control of PD transport by the MP-glucanase and GrIP/pdGRP/glucanase systems. We showed that MP directly interacts with ?-1,3 glucanase, an enzyme that destroys callose located in the neck region of PD and known to restrict of PD transport. We hypothesize that the MP-glucanase interaction promotes relaxation of the callose sphincter, resulting in PD gating. On the other hand, we discovered a GrIP/pdGRP/glucanase system, in which a PD-associated glycine-rich protein (pdGRP) interacts with ?-1,3 glucanase, potentially inhibiting its activity and leading to tightening of the callose sphincter. The levels of pdGRP itself are modulated by its interacting protein, GrIP. Thus, modulation of the ?-1,3 glucanase by MP and cellular factors likely represents another regulatory "checkpoint" in the PD transport pathway. We shall examine the mechanisms by which MP-glucanase interaction and the GrIP/pdGRP/glucanase system control PD permeability via callose accumulation. We shall study the MP-glucanase and pdGRP-glucanase interactions and their effects on the enzymatic activity of ?-1,3 glucanase. We shall investigate how GrIP binding to pdGRP modulates accumulation of pdGRP, and explore the role of the GrIP/pdGRP/glucanase system in developmental regulation of PD permeability.
描述(由申请人提供):拟议的研究旨在研究通过植物细胞间连接(胞间连丝(PD))的大分子运输的调节。PD连接成熟植物中的大多数细胞,并且对于维持和调节不同植物组织内和之间的通信至关重要。为了研究PD运输控制发生的机制,我们利用植物病毒,胞间连丝的海盗,通过这些通道在宿主细胞之间移动。为了广泛感染,植物病毒必须从最初感染的细胞转移到其周围的细胞。由于PD是相邻植物细胞之间的唯一连接,植物病毒使用这些通道作为它们从细胞到细胞的主要通道。烟草花叶病毒是研究最多的植物病毒之一,其PD转运是在病毒编码的运动蛋白(MP)的帮助下进行的。因此,MP代表了一个强大的分子工具,研究大分子通过PD的运输。在拟议的研究中,我们将继续利用这种实验方法,专注于最有趣的,但知之甚少,PD运输方面-其调节。在植物-病毒相互作用以及正常植物发育和形态发生过程中,需要严格控制PD运输是其核心作用所固有的。实现这种PD转运控制的分子机制在很大程度上仍然未知。在目前的项目中,我们已经分离出几种植物因子,参与这些调节途径,可能作为PD运输不同阶段的“检查点”。计划中的实验将继续并扩展这一研究方向。具体来说,以下两个目标的每一个拟议的工作将寻求研究PD调节的不同方面,共同促进对控制PD运输的分子机制的理解的单一目标。I. MP的差异磷酸化作为PD转运的“开/关”开关。我们已经确定了ER相关蛋白激酶(ERPK),特异性磷酸化MP的Ser-37残基,激活其PD门控活性。早些时候,我们还鉴定了PD相关蛋白激酶(PDPK),其在其Ser-258、Thr-261和Ser-265残基磷酸化MP,并作为MP门控PD能力的负调节剂。因此,ERPK和PDPK代表MP通过PD转运的调节“检查点”。在这里,我们将进一步研究这两种酶对MP的影响(例如,本发明的目的在于研究对PD的识别和靶向以及MP的α-螺旋和蛋白酶抗性结构域中的改变(被认为参与其PD靶向和门控活性)和PD渗透性的发育调节的影响,鉴定并初步表征它们的细胞底物,并使用反向遗传学来确定ERPK和PDPK敲除/敲低对植物病毒和细胞蛋白的PD转运的表型效应。二.通过MP-葡聚糖酶和GrIP/pdGRP/葡聚糖酶系统控制PD转运。我们发现MP直接与?- 1,3葡聚糖酶,一种破坏位于PD颈部区域的胼胝质的酶,并且已知限制PD转运。我们推测MP-葡聚糖酶相互作用促进胼胝质括约肌松弛,导致PD门控。另一方面,我们发现了一个GrIP/pdGRP/葡聚糖酶系统,其中PD相关的富含甘氨酸的蛋白(pdGRP)与?1,3葡聚糖酶,潜在地抑制其活性并导致胼胝质括约肌的收紧。pdGRP本身的水平由其相互作用蛋白GrIP调节。因此,调制的?- 1,3葡聚糖酶的MP和细胞因子可能代表另一个调节“检查点”的PD运输途径。我们将研究MP-葡聚糖酶相互作用和GrIP/pdGRP/葡聚糖酶系统通过胼胝质积累控制PD渗透性的机制。我们将研究MP-葡聚糖酶和pdGRP-葡聚糖酶的相互作用及其对?- 1,3葡聚糖酶。我们将研究GrIP结合pdGRP如何调节pdGRP的积累,并探索GrIP/pdGRP/葡聚糖酶系统在PD通透性发育调节中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VITALY H CITOVSKY其他文献
VITALY H CITOVSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VITALY H CITOVSKY', 18)}}的其他基金
Writers and Erasers of Ubiquitin Moieties in Control of Cell-to-Cell Transport in Plants
控制植物细胞间运输的泛素部分的书写者和擦除者
- 批准号:
10593120 - 财政年份:2022
- 资助金额:
$ 19.64万 - 项目类别:
Equipment Supplement for R35 GM144059 "Writers and Erasers of Ubiquitin Moieties in Control of Cell-to-Cell Transport in Plants"
R35 GM144059 的设备补充材料“控制植物细胞间运输的泛素部分的写入器和擦除器”
- 批准号:
10796474 - 财政年份:2022
- 资助金额:
$ 19.64万 - 项目类别:
Writers and Erasers of Ubiquitin Moieties in Control of Cell-to-Cell Transport in Plants
控制植物细胞间运输的泛素部分的书写者和擦除者
- 批准号:
10328387 - 财政年份:2022
- 资助金额:
$ 19.64万 - 项目类别:
Control of Macromolecular Traffic Through Plasmodesmata
通过胞间连丝控制大分子交通
- 批准号:
8662922 - 财政年份:2013
- 资助金额:
$ 19.64万 - 项目类别:
STRUCT CHAR OF PROTEIN NUCLEIC ACID COMPLEXES IN NUCLEAR IMPORT
核输入中蛋白质核酸复合物的结构特征
- 批准号:
6444689 - 财政年份:2001
- 资助金额:
$ 19.64万 - 项目类别:
REGULATION OF PROTEIN TOBACCO MOSAIC VIRUS RNA COMPLEXES
蛋白质烟草花叶病毒 RNA 复合物的调控
- 批准号:
6053614 - 财政年份:2000
- 资助金额:
$ 19.64万 - 项目类别:
REGULATION OF PROTEIN TOBACCO MOSAIC VIRUS RNA COMPLEXES
蛋白质烟草花叶病毒 RNA 复合物的调控
- 批准号:
6499509 - 财政年份:2000
- 资助金额:
$ 19.64万 - 项目类别:
STRUCT CHAR OF PROTEIN NUCLEIC ACID COMPLEXES IN NUCLEAR IMPORT
核输入中蛋白质核酸复合物的结构特征
- 批准号:
6308937 - 财政年份:2000
- 资助金额:
$ 19.64万 - 项目类别:
REGULATION OF PROTEIN TOBACCO MOSAIC VIRUS RNA COMPLEXES
蛋白质烟草花叶病毒 RNA 复合物的调控
- 批准号:
6351922 - 财政年份:2000
- 资助金额:
$ 19.64万 - 项目类别:
STRUCTURE OF PLASMODESMATA (INTERCELLULAR PLANT JUNCTIONS)
Plasmodemata(植物细胞间连接)的结构
- 批准号:
6121818 - 财政年份:1999
- 资助金额:
$ 19.64万 - 项目类别:
相似国自然基金
分化肌细胞脱细胞ECM-cells sheet 3D
支架构建及其促进容积性肌组织缺损再
生修复应用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
CAFs-TAMs-tumor cells调控在HRHPV感染致癌中的作用机制研究及AI可追溯预测模型建立
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
S100A8/A9--Myeloid cells特异性可溶性表氧化物水解酶(sEH)基因敲除改善胰岛素抵抗的新靶点
- 批准号:82070825
- 批准年份:2020
- 资助金额:53 万元
- 项目类别:面上项目
Leader cells通过CCL5调控糖酵解及基质硬度促进结直肠癌集体侵袭的 作用机制
- 批准号:81903002
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
HA/CD44在乳腺癌转移“先导细胞”(leader cells)侵袭中的作用及机制研究
- 批准号:81402419
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
双模式编码的慢病毒载体转染C6 Glioma Cells的影像学研究
- 批准号:81271563
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
树突状细胞(Dendritic cells,DCs)介导的黏膜免疫对猪轮状病毒(PRV)感染的分子作用机制研究
- 批准号:31272541
- 批准年份:2012
- 资助金额:82.0 万元
- 项目类别:面上项目
MTA2在睾丸支持细胞(Sertoli cells)中的功能和机制研究
- 批准号:31271248
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
无外源性基因iPS cells向肠细胞分化及对肠损伤的修复
- 批准号:81160050
- 批准年份:2011
- 资助金额:49.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The use of genetic code expansion to understand and enhance the activity of p19, an RNA binding protein, towards applications in human cells for the modulation of small regulatory RNA molecules
利用遗传密码扩展来理解和增强 p19(一种 RNA 结合蛋白)的活性,以在人类细胞中用于调节小调节 RNA 分子
- 批准号:
535311-2019 - 财政年份:2021
- 资助金额:
$ 19.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Decoding immunocompetence code that can reactivate aged hematopoietic stem cells
解码可重新激活老化造血干细胞的免疫能力代码
- 批准号:
21K16271 - 财政年份:2021
- 资助金额:
$ 19.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evolution of the genetic code and the effects of mistranslation on eukaryotic cells
遗传密码的进化和误译对真核细胞的影响
- 批准号:
519025-2018 - 财政年份:2020
- 资助金额:
$ 19.64万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Signalling to the Code: Understanding the biochemical regulation of DNA methylation in stem cells
编码信号:了解干细胞中 DNA 甲基化的生化调控
- 批准号:
2486497 - 财政年份:2020
- 资助金额:
$ 19.64万 - 项目类别:
Studentship
The use of genetic code expansion to understand and enhance the activity of p19, an RNA binding protein, towards applications in human cells for the modulation of small regulatory RNA molecules
利用遗传密码扩展来理解和增强 p19(一种 RNA 结合蛋白)的活性,以在人类细胞中用于调节小调节 RNA 分子
- 批准号:
535311-2019 - 财政年份:2020
- 资助金额:
$ 19.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Molecular species variants of phospholipids: a code through which cells distinguish phosphoinositide signals and their synthetic intermediates
磷脂的分子种类变体:细胞区分磷酸肌醇信号及其合成中间体的代码
- 批准号:
BB/T002530/1 - 财政年份:2019
- 资助金额:
$ 19.64万 - 项目类别:
Research Grant
The use of genetic code expansion to understand and enhance the activity of p19, an RNA binding protein, towards applications in human cells for the modulation of small regulatory RNA molecules
利用遗传密码扩展来理解和增强 p19(一种 RNA 结合蛋白)的活性,以在人类细胞中用于调节小调节 RNA 分子
- 批准号:
535311-2019 - 财政年份:2019
- 资助金额:
$ 19.64万 - 项目类别:
Postgraduate Scholarships - Doctoral
Evolution of the genetic code and the effects of mistranslation on eukaryotic cells
遗传密码的进化和误译对真核细胞的影响
- 批准号:
519025-2018 - 财政年份:2019
- 资助金额:
$ 19.64万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Evolution of the genetic code and the effects of mistranslation on eukaryotic cells
遗传密码的进化和误译对真核细胞的影响
- 批准号:
519025-2018 - 财政年份:2018
- 资助金额:
$ 19.64万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Translating the ubiquitin code in mitotic cells
在有丝分裂细胞中翻译泛素代码
- 批准号:
BB/R004137/1 - 财政年份:2018
- 资助金额:
$ 19.64万 - 项目类别:
Research Grant