Design, analysis and implementation of discrete algorithms for graph and computational geometry problems

图和计算几何问题的离散算法的设计、分析和实现

基本信息

  • 批准号:
    195732-2006
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2006
  • 资助国家:
    加拿大
  • 起止时间:
    2006-01-01 至 2007-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research is in the field of design, analysis and implementation of algorithms, a subfield within theoretical computer science. We focus on  problems arising in computational geometry and graph theory. The problems include (a) Geometric path problems - how to find a path between two points in a geometric domain (surface, planar region, three dimensional space amidst obstacles) under various constraints (shortest, monotone descending, minimizing the number of links, multiple criteria) (b) Graph separators - computing vertex/edge separators of planar (or planar like) graphs (c) Visibility optimization problems (with applications in radiation therapy) - need to see a polyhedra (tumor), avoiding/minimizing a set a polyhedra (healthy organs), from a minimum set of locations (possible position of laser guns placed outside the body) (d) Developing generic external memory algorithmic techniques for solving graph and geometric problems (e) Developing algorithmic technqiues for solving problems in variety of computational models - external memory model, parallel computing model, priced information model, streaming and models with very limited extra space (f) Approximation algorithms based on discretization - we have proposed discretization based schemes to solve geometric path problems. Most often spatial problems arising in practical settings are solved by heuristics using some form of discretization. We propose to study these problems, in light of our results, and hope to provide approximation algorithms with provable bounds in terms of their accuracy and complexity (g) Analyzing complexity of geometric algorithms using geometric parameters - traditionally the complexity of geometric algorithms is analyzed with respect to input parameters (number of segments, vertices, faces, etc.), but often in practice, the run-time is very sensitive to geometric parameters - angle, distance, fatness. So the design of the algorithm needs to take these parameters into account; this came up in our work on shortest paths. We propose to expand the design and analysis of geometric algorithms to include geometric parameters (h) Finding ways to make geometrical concepts presentable on the web in an interactive manner.
拟议的研究是在算法的设计,分析和实现领域,理论计算机科学的一个子领域。我们专注于计算几何和图论中出现的问题。这些问题包括(a)几何路径问题-如何找到几何域中两点之间的路径(表面、平面区域、障碍物中的三维空间)(最短,单调递减,最小化链接数,多个标准)(B)图形分隔符-计算平面的顶点/边分隔符(或平面类)图(c)可见性优化问题(在放射治疗中的应用)-需要看到多面体(肿瘤),避免/最小化一组多面体(健康的器官),从最少的一组位置(d)开发通用外部存储算法技术,用于解决图形和几何问题(e)开发用于解决各种计算模型中的问题的算法技术-外部存储器模型、并行计算模型、定价信息模型、流和具有非常有限的额外空间的模型(f)基于离散化的近似算法-我们已经提出了基于离散化的方案来解决几何路径问题。大多数情况下,在实际环境中出现的空间问题是通过使用某种形式的离散化解决的。我们建议根据我们的结果来研究这些问题,并希望提供近似算法,其准确性和复杂性方面具有可证明的界限。(g)使用几何参数分析几何算法的复杂性-传统上,几何算法的复杂性是相对于输入参数(段数,顶点数,面数等)进行分析的,但在实践中,运行时间通常对几何参数--角度、距离、肥度--非常敏感。因此,算法的设计需要考虑这些参数;这在我们的最短路径工作中出现。我们建议扩大几何算法的设计和分析,包括几何参数(h)找到方法,使几何概念呈现在网络上的互动方式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maheshwari, Anil其他文献

Switching to Directional Antennas with Constant Increase in Radius and Hop Distance
  • DOI:
    10.1007/s00453-012-9739-y
  • 发表时间:
    2014-06-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Bose, Prosenjit;Carmi, Paz;Maheshwari, Anil
  • 通讯作者:
    Maheshwari, Anil
Space-efficient geometric divide-and-conquer algorithms
Workplace Well-being: An Experimental Investigation into Benefits of Consciousness-based Architecture

Maheshwari, Anil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maheshwari, Anil', 18)}}的其他基金

Design and analysis of algorithms for problems in computational geometry
计算几何问题的算法设计与分析
  • 批准号:
    RGPIN-2021-03823
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Design and analysis of algorithms for problems in computational geometry
计算几何问题的算法设计与分析
  • 批准号:
    RGPIN-2021-03823
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Analysis of Algorithms for Problems in Computational Geometry
计算几何问题的算法设计与分析
  • 批准号:
    RGPIN-2016-06229
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Analysis of Algorithms for Problems in Computational Geometry
计算几何问题的算法设计与分析
  • 批准号:
    RGPIN-2016-06229
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Analysis of Algorithms for Problems in Computational Geometry
计算几何问题的算法设计与分析
  • 批准号:
    RGPIN-2016-06229
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Analysis of Algorithms for Problems in Computational Geometry
计算几何问题的算法设计与分析
  • 批准号:
    RGPIN-2016-06229
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Design and Analysis of Algorithms for Problems in Computational Geometry
计算几何问题的算法设计与分析
  • 批准号:
    RGPIN-2016-06229
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Design, analysis and implementation of geometric and graph algorithms
几何和图形算法的设计、分析和实现
  • 批准号:
    195732-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Design, analysis and implementation of geometric and graph algorithms
几何和图形算法的设计、分析和实现
  • 批准号:
    195732-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Design, analysis and implementation of geometric and graph algorithms
几何和图形算法的设计、分析和实现
  • 批准号:
    195732-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
利用全基因组关联分析和QTL-seq发掘花生白绢病抗性分子标记
  • 批准号:
    31971981
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
  • 批准号:
    31900571
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
利用多个实验群体解析猪保幼带形成及其自然消褪的遗传机制
  • 批准号:
    31972542
  • 批准年份:
    2019
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
多目标诉求下我国交通节能减排市场导向的政策组合选择研究
  • 批准号:
    71473155
  • 批准年份:
    2014
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于物质流分析的中国石油资源流动过程及碳效应研究
  • 批准号:
    41101116
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

GOALI: CNS: Medium: Communication-Computation Co-Design for Rural Connectivtiy and Intelligence under Nonuniformity: Modeling, Analysis, and Implementation
目标:CNS:媒介:非均匀性下农村互联和智能的通信计算协同设计:建模、分析和实现
  • 批准号:
    2212565
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Analysis, design, and implementation of novel high-order operator splitting methods
新型高阶算子分裂方法的分析、设计与实现
  • 批准号:
    574878-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    University Undergraduate Student Research Awards
The effects of study design characteristics on dementia assessment: Recommendations for future epidemiologic studies
研究设计特征对痴呆症评估的影响:对未来流行病学研究的建议
  • 批准号:
    10460806
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Design, analysis and implementation of novel distributed controllers for the coordination of autonomous systems
用于协调自治系统的新型分布式控制器的设计、分析和实现
  • 批准号:
    2757376
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
Improving Family Cancer History Collection using Social Network, Human Centered Design, and Implementation Science Approaches
利用社交网络、以人为本的设计和实施科学方法改进家族癌症史收集
  • 批准号:
    10652994
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
Understanding individual- and social network-level factors affecting infant HIV testing to design social network interventions to increase testing of HIV-exposed infants
了解影响婴儿艾滋病毒检测的个人和社交网络层面的因素,以设计社交网络干预措施,以增加对艾滋病毒暴露婴儿的检测
  • 批准号:
    10664870
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
Understanding individual- and social network-level factors affecting infant HIV testing to design social network interventions to increase testing of HIV-exposed infants
了解影响婴儿艾滋病毒检测的个人和社交网络层面的因素,以设计社交网络干预措施,以增加对艾滋病毒暴露婴儿的检测
  • 批准号:
    10442537
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
Understanding individual- and social network-level factors affecting infant HIV testing to design social network interventions to increase testing of HIV-exposed infants
了解影响婴儿艾滋病毒检测的个人和社交网络层面的因素,以设计社交网络干预措施,以增加对艾滋病毒暴露婴儿的检测
  • 批准号:
    10259284
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
Improving Family Cancer History Collection using Social Network, Human Centered Design, and Implementation Science Approaches
利用社交网络、以人为本的设计和实施科学方法改进家族癌症史收集
  • 批准号:
    10407663
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
Improving Family Cancer History Collection using Social Network, Human Centered Design, and Implementation Science Approaches
利用社交网络、以人为本的设计和实施科学方法改进家族癌症史收集
  • 批准号:
    10402447
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了