Geometric harmonic analysis for diffusive heat equations
扩散热方程的几何调和分析
基本信息
- 批准号:261100-2007
- 负责人:
- 金额:$ 0.87万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The interaction between harmonic analysis and partial differential equations (PDE) has a long history going back to the Dirichlet problem for the Laplace equation. Nowadays, a fruitful ground for the interplay is the study of various aspects of PDE. With special emphasis on the geometric capacity-measure theory approach, this proposed research program will be centered about the boundary between the above two core areas via the Cauchy problem for the linear-nonlinear heat equations. Particular topics to be investigated include:* Spacetime estimates for the parabolic Riesz type potentials and capacities generated by solutions to the inhomogeneous heat equations.* Wellposedness of the nonlinear heat equations such as the semilinear dissipative, dissipative quasi-geostrophic, and generalized Euler and Navier-Stokes equations.* Carleson type measures versus Riesz type capacities through a priori estimations of solutions to the homogeneous heat and Schroedinger equations in terms of the initial data.* Function-theoretic and/or operator-theoretic characterizations of various function spaces associated to the heat semigroup operators.* Sharp geometric and/or analytic inequalities (e.g. the capacitary Brunn-Minkowski and logarithmic Sobolev estimates) related to the convexity of potentials and some dissipative equations.The principle ideas and techniques will involve developing some geometric features of harmonic analysis over function spaces and their operators, building on many significant advances in complex-harmonic analysis, operator-potential theory, and convex geometry made in the last decades by a number of people. It is expected that this research will provide useful tools for the field of evolution equations and convex geometric analysis.
调和分析与偏微分方程的相互作用由来已久,最早可以追溯到拉普拉斯方程的狄里克莱特问题。如今,对偏微分方程各个方面的研究是相互作用的一个富有成效的基础。特别强调几何容量-测量理论方法,本研究计划将通过线性-非线性热方程的柯西问题,以上述两个核心区的边界为中心。要研究的特殊课题包括:*由非齐次热方程解产生的抛物型Riesz型势和容量的时空估计。*非线性热方程的适定性,如半线性耗散、耗散准地转、和推广的Euler和Navier-Stokes方程。*Carleson型度量与Riesz型容量通过根据初始数据对齐次热方程和薛定谔方程的解的先验估计。*与热半群算子相关的各种函数空间的函数论和/或算子论特征。*与势的凸性有关的尖锐的几何和/或分析不等式(例如,电容Brunn-Minkowski和对数Sobolev估计)和一些耗散方程。基本思想和技术将涉及发展函数空间及其算子上的调和分析的一些几何特征,建立在复调和分析、算子势理论、算子势理论的许多重大进展的基础上以及最近几十年由许多人制作的凸几何学。期望本文的研究将为演化方程和凸几何分析领域提供有用的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao, Jie其他文献
Increased talin-vinculin spatial proximities in livers in response to spotted fever group rickettsial and Ebola virus infections
- DOI:
10.1038/s41374-020-0420-9 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:5
- 作者:
Liu, Yakun;Xiao, Jie;Gong, Bin - 通讯作者:
Gong, Bin
Development and characterization of a hydroxypropyl starch/zein bilayer edible film
- DOI:
10.1016/j.ijbiomac.2019.08.240 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:8.2
- 作者:
Chen, Xia;Cui, Feihe;Xiao, Jie - 通讯作者:
Xiao, Jie
Prokaryotic Expression of Eimeria magna SAG10 and SAG11 Genes and the Preliminary Evaluation of the Effect of the Recombinant Protein on Immune Protection in Rabbits.
- DOI:
10.3390/ijms231810942 - 发表时间:
2022-09-19 - 期刊:
- 影响因子:5.6
- 作者:
Pu, Jiayan;Xiao, Jie;Bai, Xin;Chen, Hao;Zheng, Ruoyu;Gu, Xiaobin;Xie, Yue;He, Ran;Xu, Jing;Jing, Bo;Peng, Xuerong;Yang, Guangyou - 通讯作者:
Yang, Guangyou
Identification of Key Genes Related to Immune Cells in Patients with COVID-19 Via Integrated Bioinformatics-Based Analysis.
- DOI:
10.1007/s10528-023-10400-1 - 发表时间:
2023-12 - 期刊:
- 影响因子:2.4
- 作者:
Chen, Zhao-jun;Xiao, Jie;Chen, Hai-hua - 通讯作者:
Chen, Hai-hua
Quantitative analysis of single-molecule superresolution images.
- DOI:
10.1016/j.sbi.2014.08.008 - 发表时间:
2014-10 - 期刊:
- 影响因子:6.8
- 作者:
Coltharp, Carla;Yang, Xinxing;Xiao, Jie - 通讯作者:
Xiao, Jie
Xiao, Jie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao, Jie', 18)}}的其他基金
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2022
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2020
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2018
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2017
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Singular Integrals in Geometric Analysis
几何分析中的奇异积分
- 批准号:
261100-2012 - 财政年份:2016
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Singular Integrals in Geometric Analysis
几何分析中的奇异积分
- 批准号:
261100-2012 - 财政年份:2015
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Singular Integrals in Geometric Analysis
几何分析中的奇异积分
- 批准号:
261100-2012 - 财政年份:2014
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Singular Integrals in Geometric Analysis
几何分析中的奇异积分
- 批准号:
261100-2012 - 财政年份:2013
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
算子方法在Harmonic数恒等式中的应用
- 批准号:11201241
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Ricci-Harmonic流的长时间存在性
- 批准号:11126190
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
系数在局部常层中的上同调理论及其到代数几何的应用
- 批准号:10471105
- 批准年份:2004
- 资助金额:17.0 万元
- 项目类别:面上项目
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
- 批准号:30470495
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2022
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Continuing Grant
Geometric Harmonic Analysis: Affine and Frobenius-Hörmander Geometry
几何调和分析:仿射几何和 Frobenius-Hörmander 几何
- 批准号:
2054602 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2020
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
New development on higher order elliptic and parabolic PDEs -- cooperation between harmonic analysis and geometric analysis
高阶椭圆偏微分方程和抛物线偏微分方程的新进展——调和分析与几何分析的结合
- 批准号:
20KK0057 - 财政年份:2020
- 资助金额:
$ 0.87万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Collaborative Research: Geometric Harmonic Analysis in Learning and Inference: Theory and Applications
合作研究:学习和推理中的几何调和分析:理论与应用
- 批准号:
1854831 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
Continuing Grant