Hopf algebras of transvers geometries and their hopf cyclic cohomology
横向几何的 Hopf 代数及其 hopf 循环上同调
基本信息
- 批准号:355531-2008
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2008
- 资助国家:加拿大
- 起止时间:2008-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The present proposal concerns the development of suitable methods and techniques that will facilitate concrete calculations with a new algebraic machinery called Hopf cyclic cohomology. This apparatus was invented by Connes and Moscovici in the process of computing characteristic invariants for geometric spaces defined in terms of non-commuting coordinates (as they appear in quantum physics. Their work brought to light the importance of a specific type of symmetry in dealing with non-commutative coordinates, encoded by objects called Hopf algebras. Our proposal focuses on a class of such objects, which are closely related to classical groups of symmetries with infinitely many parameters, discovered by Sophus Lie and studied by Elie Cartan about 100 years ago). We propose to develop appropriate algebraic (homological) tools that will allow the explicit computation of their Hopf cyclic cohomology. There are two categories of classical groups: flat and non-flat. In the flat case, we associate a sophisticated Hopf algebra, called a bicrossed product Hopf algebra, to the group in question. Such a Hopf algebra is made of two minor Hopf algebras. The next step is to develop homological tools for computing the Hopf cyclic cohomology of the Hopf algebra by using the homology of the minor Hopf algebras. We show that the Hopf cyclic cohomology of the Hopf algebra is the same as the Gelfand-Fuks cohomology of the Lie algebra of the group. The non-flat case is a different situation. The associated Hopf algebra seems to be more sophisticated; unlike the flat case, it is not of bicrossed product form. Instead, it seems to be a new algebraic construction made of an algebra and a coalgebra together with some interactions and compatibilities between them. This opens a window to a new theory involving the theory of Hopf algebras, Hopf cyclic cohomology and transversal geometry. We proposed to develop new theories and tools to study these new Hopf algebras from the Hopf cyclic cohomology point of view.
目前的建议涉及合适的方法和技术的发展,将促进具体计算与一个新的代数机制称为Hopf循环上同。这个装置是由Connes和Moscovici在计算由非交换坐标定义的几何空间的特征不变量的过程中发明的(就像它们出现在量子物理学中一样)。他们的工作揭示了一种特殊类型的对称在处理非交换坐标时的重要性,这种对称由称为Hopf代数的对象编码。我们的建议集中在一类这样的物体上,它们与具有无限多参数的经典对称群密切相关,这些对称群是由Sophus Lie发现并由Elie Cartan在大约100年前研究的)。我们建议开发适当的代数(同调)工具,将允许显式计算他们的Hopf循环上同调。经典群有两类:平的和非平的。在平面情况下,我们将复杂的Hopf代数,称为交叉积Hopf代数,与所讨论的群联系起来。这样一个Hopf代数是由两个较小的Hopf代数组成的。下一步是利用次Hopf代数的同调性,开发计算Hopf代数的Hopf循环上同调的同调工具。证明了Hopf代数的Hopf循环上同调与群的李代数的Gelfand-Fuks上同调是相同的。非平坦的情况是另一种情况。相关的霍普夫代数似乎更复杂;不像扁平的情况下,它不是交叉产品形式。相反,它似乎是由代数和协代数以及它们之间的一些相互作用和兼容性组成的一种新的代数结构。这为涉及Hopf代数、Hopf循环上同调和横向几何的新理论打开了一扇窗。我们提出从Hopf循环上同的观点出发,发展新的理论和工具来研究这些新的Hopf代数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rangipour, Bahram其他文献
Rangipour, Bahram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rangipour, Bahram', 18)}}的其他基金
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
- 批准号:
RGPIN-2018-04039 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
- 批准号:
RGPIN-2018-04039 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
- 批准号:
RGPIN-2018-04039 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
- 批准号:
RGPIN-2018-04039 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
- 批准号:
RGPIN-2018-04039 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
- 批准号:
355531-2013 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
- 批准号:
355531-2013 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
- 批准号:
355531-2013 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
- 批准号:
355531-2013 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
- 批准号:
355531-2013 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
- 批准号:
2412346 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Categorification and KLR algebras
分类和 KLR 代数
- 批准号:
DP240101809 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Projects
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Quantum algebras with supersymmetries
具有超对称性的量子代数
- 批准号:
DP240101572 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Projects
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
- 批准号:
2350049 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
Conference: Young Mathematicians in C*-Algebras 2024
会议:C*-代数中的青年数学家 2024
- 批准号:
2404675 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shuffle algebras and vertex models
洗牌代数和顶点模型
- 批准号:
DP240101787 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Projects