Framework and models for an event-based early warning system design

基于事件的预警系统设计的框架和模型

基本信息

  • 批准号:
    RGPIN-2014-05812
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

I have proposed a five-year research program that aims to develop an event-based approach to the design and management of warning systems used in process industries. The special features and novelty of the proposed approach are in the allocation of warnings to specific events, the use of risk as a basis for alarm annunciation and categorization, and the use of prediction for warnings. The challenges in the design of such a warning system are tied to identification of events, selection of their associated variable sets, and continuous estimation of the risk of corresponding events. Moreover, the use of prediction will require the development of identification schemes to estimate models with the ability to predict variables around safety limits. My experience with the development of novel system identification algorithms and our recent works in the field of alarm system design will be valuable tools to overcome the above challenges. My record of contributions, previous and current HQP training performance, and detailed plan for HQP training will ensure the success of the program. The outcome of the program will be a novel warning system design framework and models, corresponding intellectual properties, and a group of highly qualified personnel. This program will also help to establish the applicant as a leading contributor to this field of significant industrial importance. Warning systems for industrial operations, including alerts and both process and safety alarms, play a key role in monitoring process safety. These systems warn operators of abnormal operating conditions, and seek the attention of an operator when intervention is required. Timely action, based on real warnings, is needed to help enhance plant safety and minimize costs through the effective prevention, control and mitigation of abnormal situations. In industrial plants, however, misleading warnings are a regular occurrence. Moreover, when flooded with spurious alarms, the warning system may itself contribute to abnormal situations and to plant accidents. A root cause of the ineffectiveness of existing warning systems is the large number of warnings that result from the use of single-variable settings. The number of warnings in a plant needs to be significantly reduced. Warnings should be made informative, actionable and clear indicators of the risk associated with the current state of process/system variables. Plant operators should not need to monitor the trend of individual variables; instead, the risk profiles of a plant should be monitored, with warnings that have predictive capabilities. To achieve adoption of this novel approach, a paradigm shift in the overall design of the warning systems is needed. To overcome the problems associated with existing warning systems (use of single variables, alarm flooding), the proposed research program will develop an event-based approach to warning system design and management that will improve the ability of plant operators to identify potential problems, make timely decisions and take any necessary actions. By assigning warnings to events, the number of warnings will be significantly reduced, as will the number of false warnings. Incorporation of risk in the methodology for annunciation will make it possible to accommodate the importance of the process variables and the criticality of an abnormal situation. Thus it will be possible to categorize warnings using a well-defined metric. Finally, the use of prediction will provide operators with extra time to take necessary measures. The new warning system will be a valuable addition to the arsenal of plant operators in their management of abnormal situations, the prevention of plant accidents, and improve process safety.
我已经提出了一个为期五年的研究计划,旨在开发一种基于事件的方法来设计和管理流程工业中使用的警报系统。拟议方法的特点和新颖性在于将警告分配给特定事件,使用风险作为警报通知和分类的基础,以及使用警告的预测。设计这样一个预警系统的挑战与识别事件、选择其相关变量集以及持续估计相应事件的风险有关。此外,使用预测将需要开发识别方案,以估计具有预测安全界限附近变量的能力的模型。我在开发新的系统识别算法方面的经验和我们在警报系统设计领域的最新工作将是克服上述挑战的宝贵工具。我的贡献记录,以往和现在的HQP培训业绩,以及详细的HQP培训计划将确保项目的成功。该项目的成果将是一个新颖的预警系统设计框架和模型、相应的知识产权和一批高素质的人员。该计划还将有助于将申请者确立为这一具有重大工业重要性的领域的主要贡献者。工业操作的警报系统,包括警报和过程和安全警报,在监控过程安全方面发挥着关键作用。这些系统警告操作员异常操作条件,并在需要干预时寻求操作员的注意。需要根据真正的警告及时采取行动,通过有效预防、控制和缓解异常情况,帮助提高工厂安全并将成本降至最低。然而,在工业工厂,误导性的警告是经常发生的。此外,当虚假警报泛滥时,警报系统本身可能会导致异常情况和工厂事故。现有警告系统无效的一个根本原因是使用单变量设置导致的大量警告。工厂中的警告数量需要大幅减少。应使警告成为与过程/系统变量当前状态相关的风险的信息、可操作和明确的指标。工厂操作员不应该需要监测单个变量的趋势;相反,应该监测工厂的风险概况,并发出具有预测能力的警告。为了实现这一新方法的采用,需要在警报系统的总体设计上进行范式转变。为了克服与现有预警系统相关的问题(使用单变量、警报泛滥),拟议的研究计划将开发一种基于事件的预警系统设计和管理方法,以提高工厂操作员识别潜在问题、及时决策和采取任何必要行动的能力。通过向事件分配警告,警告的数量将显著减少,错误警告的数量也将大大减少。将风险纳入通报方法将使其能够适应过程变量的重要性和异常情况的危急程度。因此,可以使用定义明确的指标对警告进行分类。最后,预测的使用将为运营商提供额外的时间来采取必要的措施。新的警报系统将是工厂操作员在管理异常情况、防止工厂事故和提高工艺安全方面的宝贵补充。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmed, Salim其他文献

Utility of a novel watch-based pulse detection system to detect pulselessness in human subjects
  • DOI:
    10.1016/j.hrthm.2011.07.030
  • 发表时间:
    2011-12-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Rickard, John;Ahmed, Salim;Menon, Venu
  • 通讯作者:
    Menon, Venu
An ontology-based methodology for hazard identification and causation analysis
IDENTIFICATION FROM STEP RESPONSE - THE INTEGRAL EQUATION APPROACH
A methodical approach for knowledge-based fire and explosion accident likelihood analysis
Robust Process Monitoring Methodology for Detection and Diagnosis of Unobservable Faults

Ahmed, Salim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ahmed, Salim', 18)}}的其他基金

Probabilistic predictive warning system for process operations
过程操作的概率预测预警系统
  • 批准号:
    RGPIN-2019-04122
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic predictive warning system for process operations
过程操作的概率预测预警系统
  • 批准号:
    RGPIN-2019-04122
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic predictive warning system for process operations
过程操作的概率预测预警系统
  • 批准号:
    RGPIN-2019-04122
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic predictive warning system for process operations
过程操作的概率预测预警系统
  • 批准号:
    RGPIN-2019-04122
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Framework and models for an event-based early warning system design
基于事件的预警系统设计的框架和模型
  • 批准号:
    RGPIN-2014-05812
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Framework and models for an event-based early warning system design
基于事件的预警系统设计的框架和模型
  • 批准号:
    RGPIN-2014-05812
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Framework and models for an event-based early warning system design
基于事件的预警系统设计的框架和模型
  • 批准号:
    RGPIN-2014-05812
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Framework and models for an event-based early warning system design
基于事件的预警系统设计的框架和模型
  • 批准号:
    RGPIN-2014-05812
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of operational risk management framework for marine operations in harsh environments
制定恶劣环境下海上作业的操作风险管理框架
  • 批准号:
    486678-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
  • 批准号:
    41105105
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
保险风险模型、投资组合及相关课题研究
  • 批准号:
    10971157
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
  • 批准号:
    30830037
  • 批准年份:
    2008
  • 资助金额:
    190.0 万元
  • 项目类别:
    重点项目
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

A kinetic framework to map the genetic determinants of alternative RNA isoform expression
绘制替代 RNA 亚型表达遗传决定因素的动力学框架
  • 批准号:
    10638072
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
A Simulation Model-based Framework to Support Oncology Guidelines and Practice
支持肿瘤学指南和实践的基于仿真模型的框架
  • 批准号:
    9977402
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
Collaboration Capacity: A Framework for Measuring Data-Intensive Biomedical Research
协作能力:衡量数据密集型生物医学研究的框架
  • 批准号:
    9981992
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
Collaboration Capacity: A Framework for Measuring Data-Intensive Biomedical Research
协作能力:衡量数据密集型生物医学研究的框架
  • 批准号:
    10318091
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
Framework and models for an event-based early warning system design
基于事件的预警系统设计的框架和模型
  • 批准号:
    RGPIN-2014-05812
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
A quantitative framework for understanding endosomal trafficking networks in Alzheimer's disease
了解阿尔茨海默氏病内体运输网络的定量框架
  • 批准号:
    10470286
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
A novel computing framework to automatically process cardiac valve image data and predict treatment outcomes
一种新颖的计算框架,可自动处理心脏瓣膜图像数据并预测治疗结果
  • 批准号:
    10162650
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
A quantitative framework for understanding endosomal trafficking networks in Alzheimer's disease
了解阿尔茨海默氏病内体运输网络的定量框架
  • 批准号:
    10241471
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
Use of a machine learning framework to predict severe maternal morbidity
使用机器学习框架来预测严重的孕产妇发病率
  • 批准号:
    9767258
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
A novel computing framework to automatically process cardiac valve image data and predict treatment outcomes
一种新颖的计算框架,可自动处理心脏瓣膜图像数据并预测治疗结果
  • 批准号:
    9973167
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了