Learning Analytics for Adaptive Systems supporting Self-regulated Social Learning
支持自我调节社交学习的自适应系统的学习分析
基本信息
- 批准号:356029-2013
- 负责人:
- 金额:$ 0.88万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Opportunities to facilitate learning, in all forms from elementary schools to post-secondary, workplace, and life-long learning and at different levels, on the Internet and with social media are widely recognized today. However, information offered on the Internet and learning activities in social media, even via formal academic courses, are mainly not based on empirically-proven recommendations from learning sciences. Often, learners are left "on their own" to figure out which study tactics best work for them. This is a serious threat given that most learners have weak skills for self-regulated learning, as reported in learning science research. This can have severe effects on their learning success with numerous societal consequences such as high dropout rates and workforce unprepared for career transitions.
Adaptive learning systems are seen as a promising approach to enhancing (self-regulated) learning through real-time adaptations based on observed progress and traits of learners. In contemporary systems, adaptations are focused on one specific group of students to assist (e.g., those at risk) typically by measuring the distance between a learner's progress and the traits expected that learners should have "on average." To unlock the full potential of social adaptive learning systems, profound methods and techniques for harnessing the wealth of trace data logged by learning systems should be developed in order to optimize learning for diverse learner subpopulations. Therefore, the objectives of this research are to (i) propose methods for analysis of self-regulated learning in social context by mining quantitative (e.g., page visit counts) and qualitative (e.g., unstructured text) crowd-sourced data about learning in action; (ii) propose methods for designing adaptive learning systems that motivate deeper learning (e.g., dialogue, peer-discussion, or self-testing) by considering learners' individual differences (e.g., motivation and goal-orientation). These methods will be used to develop new and extend existing (open source and commercial) adaptive systems supporting self-regulated social learning; and (iii) validate the effectiveness of the proposed methods in empirical studies with learners.
今天,在互联网和社交媒体上以各种形式促进学习的机会,从小学到中学后、工作场所和终身学习,以及在不同层面上都得到了广泛承认。然而,互联网上提供的信息和社交媒体上的学习活动,即使是通过正式的学术课程,主要也不是基于来自学习科学的经验证的建议。通常,学习者只能“自己”找出最适合他们的学习策略。正如学习科学研究报告所述,这是一个严重的威胁,因为大多数学习者的自我调节学习技能较弱。这可能会对他们的学习成功产生严重影响,带来许多社会后果,如高辍学率和劳动力对职业过渡缺乏准备。
自适应学习系统被认为是一种很有前途的方法,通过基于观察到的学习进度和特征的实时适应来增强(自我调节)学习。在现代系统中,适应集中在一个特定的学生群体上(例如,那些处于危险中的学生),通常是通过测量学习者的进步与学习者应该具有的“平均”特征之间的距离来实现的。为了充分发挥社会适应性学习系统的潜力,应开发利用学习系统记录的大量跟踪数据的深刻方法和技术,以便优化不同学习亚群的学习。因此,本研究的目标是:(I)通过挖掘关于行动中学习的定量(例如,页面访问次数)和定性(例如,非结构化文本)众源数据,提出在社会背景下分析自我调节学习的方法;(Ii)提出通过考虑学习者的个体差异(例如,动机和目标定向)来设计能够激发更深层次学习(例如,对话、同伴讨论或自我测试)的适应性学习系统的方法。这些方法将被用来开发新的和扩展现有的(开源和商业)自适应系统,以支持自我调节的社会学习;以及(Iii)在学习者的实证研究中验证所提出的方法的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gasevic, Dragan其他文献
Professional Decision Making: Reframing Teachers’ Work Using Epistemic Frame Theory
专业决策:利用认知框架理论重构教师工作
- DOI:
10.1007/978-3-030-67788-6_18 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Phillips, Michael;Siebert-Evenstone, Amanda;Kessler, Aaron;Gasevic, Dragan;Shaffer, David W. - 通讯作者:
Shaffer, David W.
Bridging learning sciences, machine learning and affective computing for understanding cognition and affect in collaborative learning
- DOI:
10.1111/bjet.12917 - 发表时间:
2020-03-06 - 期刊:
- 影响因子:6.6
- 作者:
Jarvela, Sanna;Gasevic, Dragan;Kirschner, Paul A. - 通讯作者:
Kirschner, Paul A.
Towards investigating the validity of measurement of self-regulated learning based on trace data
- DOI:
10.1007/s11409-022-09291-1 - 发表时间:
2022-05-04 - 期刊:
- 影响因子:3.3
- 作者:
Fan, Yizhou;van der Graaf, Joep;Gasevic, Dragan - 通讯作者:
Gasevic, Dragan
From Study Tactics to Learning Strategies: An Analytical Method for Extracting Interpretable Representations
- DOI:
10.1109/tlt.2018.2823317 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:3.7
- 作者:
Fincham, Ed;Gasevic, Dragan;Pardo, Abelardo - 通讯作者:
Pardo, Abelardo
Examining communities of inquiry in Massive Open Online Courses: The role of study strategies
- DOI:
10.1016/j.iheduc.2018.09.001 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:8.6
- 作者:
Kovanovic, Vitomir;Joksimovic, Srecko;Gasevic, Dragan - 通讯作者:
Gasevic, Dragan
Gasevic, Dragan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gasevic, Dragan', 18)}}的其他基金
Semantic and Learning Technologies
语义和学习技术
- 批准号:
1000229352-2013 - 财政年份:2014
- 资助金额:
$ 0.88万 - 项目类别:
Canada Research Chairs
Learning Analytics for Adaptive Systems supporting Self-regulated Social Learning
支持自我调节社交学习的自适应系统的学习分析
- 批准号:
356029-2013 - 财政年份:2014
- 资助金额:
$ 0.88万 - 项目类别:
Discovery Grants Program - Individual
Adaptive platforms for personalized Web-based learning
用于个性化网络学习的自适应平台
- 批准号:
446329-2013 - 财政年份:2013
- 资助金额:
$ 0.88万 - 项目类别:
Engage Grants Program
Learning Analytics for Adaptive Systems supporting Self-regulated Social Learning
支持自我调节社交学习的自适应系统的学习分析
- 批准号:
356029-2013 - 财政年份:2013
- 资助金额:
$ 0.88万 - 项目类别:
Discovery Grants Program - Individual
Semantic and Learning Technologies
语义和学习技术
- 批准号:
1000229352-2013 - 财政年份:2013
- 资助金额:
$ 0.88万 - 项目类别:
Canada Research Chairs
Analytics for social learning environments
社交学习环境分析
- 批准号:
436582-2012 - 财政年份:2012
- 资助金额:
$ 0.88万 - 项目类别:
Engage Grants Program
Towards semantic web-enhanced model-driven engineering
迈向语义网络增强模型驱动工程
- 批准号:
356029-2008 - 财政年份:2012
- 资助金额:
$ 0.88万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
CAREER: Robust and Adaptive Streaming Analytics for Sensorized Farms: Internet-of-Small-Things to the Rescue
职业:适用于传感农场的稳健且自适应的流分析:小型物联网的救援
- 批准号:
2146449 - 财政年份:2022
- 资助金额:
$ 0.88万 - 项目类别:
Continuing Grant
SCH: MS-ADAPT: Multi-Sensor Adaptive Data Analytics for Physical Therapy
SCH:MS-ADAPT:用于物理治疗的多传感器自适应数据分析
- 批准号:
2205093 - 财政年份:2022
- 资助金额:
$ 0.88万 - 项目类别:
Standard Grant
Elastic Manufacturing Analytics: Improving aerospace assembly processes in an evolvable cell through adaptive data analytics and machine learning
弹性制造分析:通过自适应数据分析和机器学习改进可进化单元中的航空航天装配流程
- 批准号:
2775864 - 财政年份:2022
- 资助金额:
$ 0.88万 - 项目类别:
Studentship
CNS Core: Small: Not All Cameras are Created Equal: Systems Support for Highly Adaptive Video Analytics Pipelines
CNS 核心:小型:并非所有摄像机都是一样的:对高度自适应视频分析管道的系统支持
- 批准号:
2153449 - 财政年份:2021
- 资助金额:
$ 0.88万 - 项目类别:
Standard Grant
CNS Core: Small: Not All Cameras are Created Equal: Systems Support for Highly Adaptive Video Analytics Pipelines
CNS 核心:小型:并非所有摄像机都是一样的:对高度自适应视频分析管道的系统支持
- 批准号:
2006437 - 财政年份:2020
- 资助金额:
$ 0.88万 - 项目类别:
Standard Grant
Transforming Undergraduate Engineering Education through Adaptive Learning and Student Data Analytics
通过适应性学习和学生数据分析改变本科工程教育
- 批准号:
2013271 - 财政年份:2020
- 资助金额:
$ 0.88万 - 项目类别:
Standard Grant
A data analytics system for adaptive demand response in smart grids
智能电网中自适应需求响应的数据分析系统
- 批准号:
543866-2019 - 财政年份:2020
- 资助金额:
$ 0.88万 - 项目类别:
Collaborative Research and Development Grants
A data analytics system for adaptive demand response in smart grids
智能电网中自适应需求响应的数据分析系统
- 批准号:
543866-2019 - 财政年份:2019
- 资助金额:
$ 0.88万 - 项目类别:
Collaborative Research and Development Grants
CHS: Small: Novel Data-adaptive Analytics for Manifold Informatics: Theory, Algorithms, and Applications
CHS:小型:流形信息学的新型数据自适应分析:理论、算法和应用
- 批准号:
1812606 - 财政年份:2019
- 资助金额:
$ 0.88万 - 项目类别:
Continuing Grant
Convergence Accelerator Phase I (RAISE): Analytics-Driven Accessible Pathways To Impacts-Validated Education (ADAPTIVE)
融合加速器第一阶段 (RAISE):分析驱动的无障碍途径,实现影响力验证的教育 (ADAPTIVE)
- 批准号:
1936656 - 财政年份:2019
- 资助金额:
$ 0.88万 - 项目类别:
Standard Grant