Machine learning for non-myopic decision support and knowledge discovery
用于非短视决策支持和知识发现的机器学习
基本信息
- 批准号:418645-2012
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of our proposed research is to develop methods for using data to help humans make good long-term decisions. As a motivating example, consider choosing a medical treatment for a patient with a chronic disorder: in practice, treatment decisions are made based on knowledge about the state of the patient, knowledge about the treatment options currently available, and knowledge about how future decisions will be influenced by the patient's progress over time. Another example is the control of a water reservoir: decisions about how much water to use to generate power or irrigate crops are made based on knowledge about current demand, the state of the reservoir, and about the potential useage decisions that might be made in the future. We say a decision is "non-myopic" if it is made based on knowledge of the potential for future decision-making. In both of these examples, ultimately the final decision rests in human hands; however, there is enormous potential for that decision to be guided by sources of sequential data that are becoming more and more ubiquitous. For example, we are now seeing the development of databases that record how thousands or even millions of patients respond to different sequences of treatments over time, and these have the potential to inform non-myopic medical decision making more effectively than previous studies. However, rigorous analysis methods for constructing non-myopic decision aids from data are still in their infancy. Analysis methods in reinforcement learning and machine learning have enormous potential, but in many ways are not suited to decision aid construction: current methods do not effectively account for user preferences, they do not provide appropriate measures of confidence in their recommendations, and they do not account for the cost of gathering new data. My research aims to develop new methods without these shortcomings that can be applied to produce useful decision aids from sequential data. In the long term, as the depth and breadth of sequential medical data increases, the methods will improve the delivery of health care in Canada by providing our medical doctors with new, high-quality evidence to aid them in choosing the best treatments for their patients.
我们提出的研究的目标是开发使用数据来帮助人类做出良好的长期决策的方法。作为一个激励人心的例子,考虑为慢性病患者选择一种医疗治疗:在实践中,治疗决定是基于对患者状态的了解、对现有治疗方案的了解,以及关于患者随着时间的推移将如何影响未来决定的知识。另一个例子是水库的控制:关于用多少水发电或灌溉农作物的决定是基于对当前需求、水库状态和未来可能做出的潜在使用决定的了解。如果一个决定是基于对未来决策潜力的了解而做出的,我们就说它是“非短视的”。在这两个例子中,最终的决定掌握在人的手中;然而,该决定有巨大的潜力由变得越来越普遍的顺序数据来源来指导。例如,我们现在正在看到数据库的发展,这些数据库记录了数千甚至数百万患者随着时间的推移对不同治疗序列的反应,这些数据库有可能比以前的研究更有效地为非近视眼的医疗决策提供信息。然而,从数据中构建非短视决策辅助工具的严格分析方法仍处于初级阶段。强化学习和机器学习中的分析方法具有巨大的潜力,但在许多方面不适合决策辅助构建:目前的方法没有有效地考虑到用户的偏好,它们没有对他们的建议提供适当的置信度衡量,也没有考虑到收集新数据的成本。我的研究旨在开发没有这些缺点的新方法,这些方法可以应用于从顺序数据中产生有用的决策辅助工具。从长远来看,随着连续医疗数据的深度和广度的增加,这些方法将通过为我们的医生提供新的高质量证据来帮助他们为他们的患者选择最佳治疗方法,从而改善加拿大的医疗保健提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lizotte, Daniel其他文献
Developing a Smart Home Technology Innovation for People With Physical and Mental Health Problems: Considerations and Recommendations.
- DOI:
10.2196/25116 - 发表时间:
2022-04-29 - 期刊:
- 影响因子:5
- 作者:
Forchuk, Cheryl;Serrato, Jonathan;Lizotte, Daniel;Mann, Rupinder;Taylor, Gavin;Husni, Sara - 通讯作者:
Husni, Sara
Lizotte, Daniel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lizotte, Daniel', 18)}}的其他基金
Machine learning methodology for sequential decision support from large-scale longitudinal data
从大规模纵向数据中支持顺序决策的机器学习方法
- 批准号:
RGPIN-2018-05476 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Machine learning methodology for sequential decision support from large-scale longitudinal data
从大规模纵向数据中支持顺序决策的机器学习方法
- 批准号:
RGPIN-2018-05476 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Reinforcement Learning Methodology for Decision Analysis and Support in Long-term Care
用于长期护理决策分析和支持的强化学习方法
- 批准号:
566302-2021 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Alliance Grants
Machine learning methodology for sequential decision support from large-scale longitudinal data
从大规模纵向数据中支持顺序决策的机器学习方法
- 批准号:
RGPIN-2018-05476 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Machine learning methodology for sequential decision support from large-scale longitudinal data
从大规模纵向数据中支持顺序决策的机器学习方法
- 批准号:
RGPIN-2018-05476 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Predictive modelling methodology for longitudinal data in long-term care****
长期护理纵向数据的预测建模方法****
- 批准号:
536877-2018 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Engage Grants Program
Machine learning methodology for sequential decision support from large-scale longitudinal data
从大规模纵向数据中支持顺序决策的机器学习方法
- 批准号:
RGPIN-2018-05476 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Machine learning for non-myopic decision support and knowledge discovery
用于非短视决策支持和知识发现的机器学习
- 批准号:
418645-2012 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Data-driven prediction of mental health risk
数据驱动的心理健康风险预测
- 批准号:
506093-2016 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Engage Grants Program
Machine learning for non-myopic decision support and knowledge discovery
用于非短视决策支持和知识发现的机器学习
- 批准号:
418645-2012 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries
协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞
- 批准号:
2230060 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Advanced machine learning to empower ultra-sensitive liquid biopsy in melanoma and non-small cell lung cancer
先进的机器学习使黑色素瘤和非小细胞肺癌的超灵敏液体活检成为可能
- 批准号:
10591304 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Machine Learning Enabled Non-contact Sensing Platform for Blood Pressure and Glucose Prediction
用于血压和血糖预测的机器学习非接触式传感平台
- 批准号:
23K11341 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-institutional validation of a multi-modal machine learning algorithm to predict and reduce acute care during cancer therapy
对多模式机器学习算法进行多机构验证,以预测和减少癌症治疗期间的急性护理
- 批准号:
10587221 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
- 批准号:
2240789 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries
协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞
- 批准号:
2230061 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
Using Innovative Machine Learning to Detect Organized Support and Opposition to E-cigarette Use Prevention Campaign Messaging on Twitter and TikTok
使用创新的机器学习来检测 Twitter 和 TikTok 上有组织的对电子烟使用预防运动消息的支持和反对
- 批准号:
10720700 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Non-Contact Sleep Stage Estimation: Machine Learning in Multi-Imbalance Data for Improvements in Accuracy and Interpretability
非接触式睡眠阶段估计:多重不平衡数据中的机器学习,以提高准确性和可解释性
- 批准号:
22KJ1367 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows