Statistical methods for data integration

数据整合的统计方法

基本信息

  • 批准号:
    RGPIN-2015-04360
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Preamble: The nature of genomics research and application has changed drastically in the last two decades. Increasingly inexpensive new technologies are being used to produce large biological data with the aim of gaining fundamental understanding of molecular biology, elucidating etiology of diseases and assessing the potential predictive utility of genomic information in clinical medicine as well as public health areas. The various genomic data sets that are being generated may contain both independent and redundant information. High throughput biological data also tend to be noisy. Hypothesis: Novel sparse statistical methods that can capture essential characteristics of noisy data, and integrative statistical analyses that allow synthesis of information across data sets, will improve our ability to estimate effect sizes reliably, provide more power in detecting associations and lead to more accurate predictions. Furthermore, improved results will be obtained by considering measures of relative importance in the integrative analyses.   AIM 1: Integrative Methods for Heterogeneous Data. We will develop kernel based statistical methods for supervised and unsupervised integration. We will provide a unified conceptual and methodological framework for integrating heterogeneous data types. This will include approaches for integrating genomic data with environmental, clinical and laboratory measurements. We will compare and contrast methods using simulations, and empirically evaluate using data from our collaborators as well as data available in the public domain. AIM 2: Integrative Multivariate Methods for the Analysis of Microbiome Data We will develop multivariate methods for the analysis of microbiome data that incorporate sparse representation and extend an integrative framework to filter out noisy features. Finally we will develop methods for jointly analyzing multiple correlated phenotypes. Significance: Using multi-pronged integrative approaches and with appropriate sparse statistical methodologies, critical information will be generated, accurate assessment of genetic and clinical variability can be determined, and precise and valid assessment of outcomes will be maximized. Highly qualified personnel (HQPs) will be trained and software based on our work will be made freely available to the wider scientific community.
前言:基因组学研究和应用的性质在过去二十年中发生了巨大变化。 越来越便宜的新技术正被用来产生大量的生物数据,目的是获得对分子生物学的基本了解,阐明疾病的病因,并评估基因组信息在临床医学和公共卫生领域的潜在预测效用。正在生成的各种基因组数据集可能包含独立和冗余信息。高通量生物数据也往往是有噪声的。 假设:新的稀疏统计方法可以捕捉噪声数据的基本特征,综合统计分析允许跨数据集合成信息,将提高我们可靠估计效应大小的能力,在检测关联方面提供更多的力量,并导致更准确的预测。此外,通过在综合分析中考虑相对重要性的措施,将获得更好的结果。   目标1:异构数据的集成方法。我们将开发基于核的统计方法,用于监督和非监督集成。我们将为集成异构数据类型提供一个统一的概念和方法框架。这将包括将基因组数据与环境、临床和实验室测量相结合的方法。我们将使用模拟比较和对比方法,并使用我们合作者的数据以及公共领域的数据进行经验评估。 目的2:微生物组数据分析的综合多变量方法 我们将开发用于微生物组数据分析的多变量方法,这些方法将稀疏表示和扩展综合框架以过滤掉噪声特征。最后,我们将开发联合分析多种相关表型的方法。 重要性:使用多管齐下的综合方法和适当的稀疏统计方法,将产生关键信息,可以确定遗传和临床变异性的准确评估,并将最大限度地提高结局的准确和有效评估。高素质人员(HQP)将接受培训,基于我们工作的软件将免费提供给更广泛的科学界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beyene, Joseph其他文献

Prediction of excess pregnancy weight gain using psychological, physical, and social predictors: A validated model in a prospective cohort study
  • DOI:
    10.1371/journal.pone.0233774
  • 发表时间:
    2020-06-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    McDonald, Sarah D.;Yu, Zhijie Michael;Beyene, Joseph
  • 通讯作者:
    Beyene, Joseph
Low bone mineral density and fractures in long-term hemodialysis patients: A meta-analysis
  • DOI:
    10.1053/j.ajkd.2007.02.264
  • 发表时间:
    2007-05-01
  • 期刊:
  • 影响因子:
    13.2
  • 作者:
    Jamal, Sophie A.;Hayden, Jill A.;Beyene, Joseph
  • 通讯作者:
    Beyene, Joseph
Integrative multiomics analysis of infant gut microbiome and serum metabolome reveals key molecular biomarkers of early onset childhood obesity.
  • DOI:
    10.1016/j.heliyon.2023.e16651
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Rafiq, Talha;Stearns, Jennifer C.;Shanmuganathan, Meera;Azab, Sandi M.;Anand, Sonia S.;Thabane, Lehana;Beyene, Joseph;Williams, Natalie C.;Morrison, Katherine M.;Teo, Koon K.;Britz-McKibbin, Philip;Souza, Russell J. de
  • 通讯作者:
    Souza, Russell J. de
Mapping and determinants of consumption of egg and/or flesh foods and zero vegetables or fruits among young children in SSA.
  • DOI:
    10.1038/s41598-022-15102-z
  • 发表时间:
    2022-07-13
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Hailu, Bayuh Asmamaw;Geremew, Bisrat Misganew;Liverani, Silvia;Abera, Kindiye Setargie;Beyene, Joseph;Miheretu, Birhan Asmame
  • 通讯作者:
    Miheretu, Birhan Asmame
Bias-corrected estimator for intraclass correlation coefficient in the balanced one-way random effects model
  • DOI:
    10.1186/1471-2288-12-126
  • 发表时间:
    2012-08-20
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Atenafu, Eshetu G.;Hamid, Jemila S.;Beyene, Joseph
  • 通讯作者:
    Beyene, Joseph

Beyene, Joseph的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Beyene, Joseph', 18)}}的其他基金

Statistical methods for data integration
数据整合的统计方法
  • 批准号:
    RGPIN-2015-04360
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for data integration
数据整合的统计方法
  • 批准号:
    RGPIN-2015-04360
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for data integration
数据整合的统计方法
  • 批准号:
    RGPIN-2015-04360
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for data integration
数据整合的统计方法
  • 批准号:
    RGPIN-2015-04360
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for investigating linear and non-linear relationships in sparse high-dimensional data
研究稀疏高维数据中线性和非线性关系的统计方法
  • 批准号:
    293295-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for investigating linear and non-linear relationships in sparse high-dimensional data
研究稀疏高维数据中线性和非线性关系的统计方法
  • 批准号:
    293295-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for investigating linear and non-linear relationships in sparse high-dimensional data
研究稀疏高维数据中线性和非线性关系的统计方法
  • 批准号:
    293295-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for investigating linear and non-linear relationships in sparse high-dimensional data
研究稀疏高维数据中线性和非线性关系的统计方法
  • 批准号:
    293295-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for investigating linear and non-linear relationships in sparse high-dimensional data
研究稀疏高维数据中线性和非线性关系的统计方法
  • 批准号:
    293295-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for genomic research
基因组研究的统计方法
  • 批准号:
    293295-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
  • 批准号:
    DP240100143
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Projects
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
  • 批准号:
    24K16343
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
  • 批准号:
    2310450
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
  • 批准号:
    10714930
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
Integrated experimental and statistical tools for ultra-high-throughput spatial transcriptomics
用于超高通量空间转录组学的集成实验和统计工具
  • 批准号:
    10727130
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
  • 批准号:
    10594266
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
  • 批准号:
    10740240
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
Statistical Methods for Response Process Data
响应过程数据的统计方法
  • 批准号:
    2310664
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了