Statistical methods for data integration
数据整合的统计方法
基本信息
- 批准号:RGPIN-2015-04360
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Preamble: The nature of genomics research and application has changed drastically in the last two decades.***Increasingly inexpensive new technologies are being used to produce large biological data with the aim of gaining fundamental understanding of molecular biology, elucidating etiology of diseases and assessing the potential predictive utility of genomic information in clinical medicine as well as public health areas. The various genomic data sets that are being generated may contain both independent and redundant information. High throughput biological data also tend to be noisy.******Hypothesis: Novel sparse statistical methods that can capture essential characteristics of noisy data, and integrative statistical analyses that allow synthesis of information across data sets, will improve our ability to estimate effect sizes reliably, provide more power in detecting associations and lead to more accurate predictions. Furthermore, improved results will be obtained by considering measures of relative importance in the integrative analyses.*** ***AIM 1: Integrative Methods for Heterogeneous Data. We will develop kernel based statistical methods for supervised and unsupervised integration. We will provide a unified conceptual and methodological framework for integrating heterogeneous data types. This will include approaches for integrating genomic data with environmental, clinical and laboratory measurements. We will compare and contrast methods using simulations, and empirically evaluate using data from our collaborators as well as data available in the public domain.***AIM 2: Integrative Multivariate Methods for the Analysis of Microbiome Data***We will develop multivariate methods for the analysis of microbiome data that incorporate sparse representation and extend an integrative framework to filter out noisy features. Finally we will develop methods for jointly analyzing multiple correlated phenotypes.***Significance: Using multi-pronged integrative approaches and with appropriate sparse statistical methodologies, critical information will be generated, accurate assessment of genetic and clinical variability can be determined, and precise and valid assessment of outcomes will be maximized. Highly qualified personnel (HQPs) will be trained and software based on our work will be made freely available to the wider scientific community.**
前言:在过去的二十年里,基因组学研究和应用的性质发生了巨大的变化。*越来越便宜的新技术正被用于产生大量的生物数据,目的是获得对分子生物学的基本了解,阐明疾病的病因,并评估基因组信息在临床医学和公共卫生领域的潜在预测效用。正在生成的各种基因组数据集可能既包含独立信息又包含冗余信息。高通量的生物数据也往往是有噪声的。*假设:能够捕捉噪声数据的基本特征的新的稀疏统计方法,以及允许跨数据集合成信息的综合统计分析,将提高我们可靠地估计效应大小的能力,在检测关联方面提供更大的能力,并导致更准确的预测。此外,通过考虑综合分析中相对重要的衡量标准,将获得更好的结果。目标1:非均质数据的综合方法。我们将开发基于核的统计方法,用于监督和非监督集成。我们将为集成不同的数据类型提供统一的概念和方法框架。这将包括将基因组数据与环境、临床和实验室测量相结合的方法。我们将使用模拟来比较和对比各种方法,并使用我们的合作者的数据以及公共领域中可用的数据进行经验性评估。*目标2:微生物组数据的综合多变量分析方法*我们将开发结合稀疏表示法的微生物组数据分析多变量方法,并扩展一个综合框架来过滤噪声特征。最后,我们将开发联合分析多个相关表型的方法。*意义:使用多管齐下的综合方法和适当的稀疏统计方法,将生成关键信息,可以确定对遗传和临床变异性的准确评估,并将最大限度地提高对结果的准确和有效评估。将对高素质人员(HQP)进行培训,基于我们工作的软件将免费提供给更广泛的科学界。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beyene, Joseph其他文献
Prediction of excess pregnancy weight gain using psychological, physical, and social predictors: A validated model in a prospective cohort study
- DOI:
10.1371/journal.pone.0233774 - 发表时间:
2020-06-02 - 期刊:
- 影响因子:3.7
- 作者:
McDonald, Sarah D.;Yu, Zhijie Michael;Beyene, Joseph - 通讯作者:
Beyene, Joseph
Integrative multiomics analysis of infant gut microbiome and serum metabolome reveals key molecular biomarkers of early onset childhood obesity.
- DOI:
10.1016/j.heliyon.2023.e16651 - 发表时间:
2023-06 - 期刊:
- 影响因子:4
- 作者:
Rafiq, Talha;Stearns, Jennifer C.;Shanmuganathan, Meera;Azab, Sandi M.;Anand, Sonia S.;Thabane, Lehana;Beyene, Joseph;Williams, Natalie C.;Morrison, Katherine M.;Teo, Koon K.;Britz-McKibbin, Philip;Souza, Russell J. de - 通讯作者:
Souza, Russell J. de
Low bone mineral density and fractures in long-term hemodialysis patients: A meta-analysis
- DOI:
10.1053/j.ajkd.2007.02.264 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:13.2
- 作者:
Jamal, Sophie A.;Hayden, Jill A.;Beyene, Joseph - 通讯作者:
Beyene, Joseph
Mapping and determinants of consumption of egg and/or flesh foods and zero vegetables or fruits among young children in SSA.
- DOI:
10.1038/s41598-022-15102-z - 发表时间:
2022-07-13 - 期刊:
- 影响因子:4.6
- 作者:
Hailu, Bayuh Asmamaw;Geremew, Bisrat Misganew;Liverani, Silvia;Abera, Kindiye Setargie;Beyene, Joseph;Miheretu, Birhan Asmame - 通讯作者:
Miheretu, Birhan Asmame
Bias-corrected estimator for intraclass correlation coefficient in the balanced one-way random effects model
- DOI:
10.1186/1471-2288-12-126 - 发表时间:
2012-08-20 - 期刊:
- 影响因子:4
- 作者:
Atenafu, Eshetu G.;Hamid, Jemila S.;Beyene, Joseph - 通讯作者:
Beyene, Joseph
Beyene, Joseph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Beyene, Joseph', 18)}}的其他基金
Statistical methods for data integration
数据整合的统计方法
- 批准号:
RGPIN-2015-04360 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for data integration
数据整合的统计方法
- 批准号:
RGPIN-2015-04360 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for data integration
数据整合的统计方法
- 批准号:
RGPIN-2015-04360 - 财政年份:2016
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for data integration
数据整合的统计方法
- 批准号:
RGPIN-2015-04360 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for investigating linear and non-linear relationships in sparse high-dimensional data
研究稀疏高维数据中线性和非线性关系的统计方法
- 批准号:
293295-2009 - 财政年份:2014
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for investigating linear and non-linear relationships in sparse high-dimensional data
研究稀疏高维数据中线性和非线性关系的统计方法
- 批准号:
293295-2009 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for investigating linear and non-linear relationships in sparse high-dimensional data
研究稀疏高维数据中线性和非线性关系的统计方法
- 批准号:
293295-2009 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for investigating linear and non-linear relationships in sparse high-dimensional data
研究稀疏高维数据中线性和非线性关系的统计方法
- 批准号:
293295-2009 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for investigating linear and non-linear relationships in sparse high-dimensional data
研究稀疏高维数据中线性和非线性关系的统计方法
- 批准号:
293295-2009 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for genomic research
基因组研究的统计方法
- 批准号:
293295-2006 - 财政年份:2008
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
- 批准号:
DP240100143 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Projects
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
- 批准号:
24K16343 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Integrated experimental and statistical tools for ultra-high-throughput spatial transcriptomics
用于超高通量空间转录组学的集成实验和统计工具
- 批准号:
10727130 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
- 批准号:
10594266 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:
10740240 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Statistical Methods for Response Process Data
响应过程数据的统计方法
- 批准号:
2310664 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant