Ultrafast photonics - new frontier in science and technology

超快光子学——科技新前沿

基本信息

  • 批准号:
    RGPIN-2016-04179
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Investigation of physical processes occurring on natural time and length scales is one of the greatest challenges in science and is the focus of my research in ultrafast photonics at university of Ottawa. In nature, electron motion is responsible for energy conversion in a photochemical process. However, tracking it has been beyond the scope of the existing tools until recently because electrons move on attosecond time scale. Also, when material dimension is reduced to nanometers, it exhibits significantly different physical, chemical, electrical and optical properties compared to the bulk. Nanostructured materials have several potential applications but existing techniques do not provide the ability to control and modify material properties in 3D with sub-micron precision. My research conducted at the extreme limits of space and time addresses these two challenges. Employing state-of-the-art laser technology we propose: (i) to produce light bullets comparable in duration to electron motion and use them to probe electron dynamics in complex molecules - a high speed burst mode photography. (ii) to use light as an ultrahigh precision machining tool to manipulate material properties by confining it to nanometer dimensions in solids. The proposed research in ultrafast photonics will lead to the development of next generation imaging, diagnostic and fabrication tools. This will enable us to image ultrafast processes in atoms/molecules. Unraveling electron dynamics enables control of photochemical processes that play a pivotal role in chemistry and biology. It is also important for emerging technologies like nano- and bio-photonics, and molecular electronics. In solids, uncovering the underlying physics of light-matter interaction enables control and optimization of process parameters that will enhance the efficiency of the manufacturing process. It also enables fabrication of novel embedded photonic devices and sensors. Technologically, it opens new vistas for photonics-related technologies that will enhance safety and security of Canadians and facilitate innovation in industry.
研究发生在自然时间和长度尺度上的物理过程是科学中最大的挑战之一,也是我在渥太华大学研究超快光子学的重点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bhardwaj, Ravi其他文献

Femtosecond laser induced surface swelling in poly-methyl methacrylate
  • DOI:
    10.1364/oe.21.012527
  • 发表时间:
    2013-05-20
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Baset, Farhana;Popov, Konstantin;Bhardwaj, Ravi
  • 通讯作者:
    Bhardwaj, Ravi
Nonlinear helical dichroism in chiral and achiral molecules
  • DOI:
    10.1038/s41566-022-01100-0
  • 发表时间:
    2022-11-28
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Begin, Jean-Luc;Jain, Ashish;Bhardwaj, Ravi
  • 通讯作者:
    Bhardwaj, Ravi
Impact of Fly Ash Composition on Mercury Speciation in Simulated Flue Gas
Femtosecond laser induced porosity in poly-methyl methacrylate
  • DOI:
    10.1016/j.apsusc.2013.06.043
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Baset, Farhana;Villafranca, Ana;Bhardwaj, Ravi
  • 通讯作者:
    Bhardwaj, Ravi
In-line fiber microcantilever vibration sensor
  • DOI:
    10.1063/1.4832342
  • 发表时间:
    2013-11-18
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Lu, Ping;Xu, Yanping;Bhardwaj, Ravi
  • 通讯作者:
    Bhardwaj, Ravi

Bhardwaj, Ravi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bhardwaj, Ravi', 18)}}的其他基金

Structured light-matter interactions: from fundamentals to applications
结构光-物质相互作用:从基础到应用
  • 批准号:
    RGPIN-2021-04308
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Structured light-matter interactions: from fundamentals to applications
结构光-物质相互作用:从基础到应用
  • 批准号:
    RGPIN-2021-04308
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast photonics - new frontier in science and technology
超快光子学——科技新前沿
  • 批准号:
    RGPIN-2016-04179
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast photonics - new frontier in science and technology
超快光子学——科技新前沿
  • 批准号:
    RGPIN-2016-04179
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast photonics - new frontier in science and technology
超快光子学——科技新前沿
  • 批准号:
    RGPIN-2016-04179
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast photonics - new frontier in science and technology
超快光子学——科技新前沿
  • 批准号:
    RGPIN-2016-04179
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Enabling New States of Light in Mid-Wave Infrared Photonics for Gas Sensing Applications
职业:在气体传感应用的中波红外光子学中实现新的光态
  • 批准号:
    2340060
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
New development of Semiconductors Intracenter Photonics
半导体中心光子学新进展
  • 批准号:
    23H05449
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
AI-powered micro-comb lasers: a new approach to transfer portable atomic clock accuracy in integrated photonics
人工智能驱动的微梳激光器:在集成光子学中传输便携式原子钟精度的新方法
  • 批准号:
    EP/W028344/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Fellowship
High-Speed, Low-Cost, Image Remapping Spectral Domain Full-Field Optical Coherence Tomography for Retinal Imaging
用于视网膜成像的高速、低成本图像重映射谱域全场光学相干断层扫描
  • 批准号:
    10670648
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Extraordinary Dispersion Engineering In Enabling Ultrafast Swept Source visiblelight Optical Coherence Tomography
非凡的色散工程实现超快扫频源可见光光学相干断层扫描
  • 批准号:
    10698705
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Exploring concepts in nanophotonics and metamaterials to create a 'super-scintillator' for time-of-flight positron emission tomography
探索纳米光子学和超材料概念,创建用于飞行时间正电子发射断层扫描的“超级闪烁体”
  • 批准号:
    10509318
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
2022 Photosensory Receptors and Signal Transduction GRC/GRS
2022 光敏感受器和信号转导GRC/GRS
  • 批准号:
    10377057
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
Light-guide Image Processing (LIP) 3D printed snapshot spectrometer for molecular imaging
用于分子成像的光导图像处理 (LIP) 3D 打印快照光谱仪
  • 批准号:
    10447267
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
2022 Photosensory Receptors and Signal Transduction GRC/GRS
2022 光敏感受器和信号转导GRC/GRS
  • 批准号:
    10545068
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
Center of Excellence for High Throughput Proteogenomic Characterization
高通量蛋白质组表征卓越中心
  • 批准号:
    10643840
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了