Ultrafast photonics - new frontier in science and technology
超快光子学——科技新前沿
基本信息
- 批准号:RGPIN-2016-04179
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Investigation of physical processes occurring on natural time and length scales is one of the greatest challenges in science and is the focus of my research in ultrafast photonics at university of Ottawa. ******In nature, electron motion is responsible for energy conversion in a photochemical process. However, tracking it has been beyond the scope of the existing tools until recently because electrons move on attosecond time scale. Also, when material dimension is reduced to nanometers, it exhibits significantly different physical, chemical, electrical and optical properties compared to the bulk. Nanostructured materials have several potential applications but existing techniques do not provide the ability to control and modify material properties in 3D with sub-micron precision. My research conducted at the extreme limits of space and time addresses these two challenges. ******Employing state-of-the-art laser technology we propose: (i) to produce light bullets comparable in duration to electron motion and use them to probe electron dynamics in complex molecules – a high speed burst mode photography. (ii) to use light as an ultrahigh precision machining tool to manipulate material properties by confining it to nanometer dimensions in solids. ******The proposed research in ultrafast photonics will lead to the development of next generation imaging, diagnostic and fabrication tools. This will enable us to image ultrafast processes in atoms/molecules. Unraveling electron dynamics enables control of photochemical processes that play a pivotal role in chemistry and biology. It is also important for emerging technologies like nano- and bio-photonics, and molecular electronics. In solids, uncovering the underlying physics of light-matter interaction enables control and optimization of process parameters that will enhance the efficiency of the manufacturing process. It also enables fabrication of novel embedded photonic devices and sensors. Technologically, it opens new vistas for photonics-related technologies that will enhance safety and security of Canadians and facilitate innovation in industry.
研究发生在自然时间和长度尺度上的物理过程是科学上最大的挑战之一,也是我在渥太华大学研究超快光子学的重点。在自然界中,电子运动负责光化学过程中的能量转换。然而,直到最近,跟踪它一直超出了现有工具的范围,因为电子以阿秒的时间尺度运动。此外,当材料尺寸减小到纳米级时,与块体相比,它显示出显著不同的物理、化学、电学和光学性质。纳米结构材料有几个潜在的应用,但现有的技术不能提供以亚微米精度在3D中控制和修改材料特性的能力。我的研究是在空间和时间的极端限制下进行的,旨在解决这两个挑战。*利用最先进的激光技术,我们提出:(I)制造持续时间与电子运动相当的灯弹,并用它们探测复杂分子中的电子动力学--高速爆发模式摄影。(2)使用光作为一种超高精度的加工工具,通过将其限制在固体中的纳米尺寸来操纵材料特性。*超快光子学的拟议研究将导致下一代成像、诊断和制造工具的发展。这将使我们能够想象原子/分子中的超快过程。解开电子动力学能够控制在化学和生物学中起关键作用的光化学过程。它对纳米和生物光子学以及分子电子学等新兴技术也很重要。在固体中,揭示光-物质相互作用的基本物理能够控制和优化工艺参数,从而提高制造过程的效率。它还使新型嵌入式光子器件和传感器的制造成为可能。在技术方面,它为与光电子相关的技术开辟了新的前景,这些技术将增强加拿大人的安全和保障,并促进工业创新。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bhardwaj, Ravi其他文献
Femtosecond laser induced surface swelling in poly-methyl methacrylate
- DOI:
10.1364/oe.21.012527 - 发表时间:
2013-05-20 - 期刊:
- 影响因子:3.8
- 作者:
Baset, Farhana;Popov, Konstantin;Bhardwaj, Ravi - 通讯作者:
Bhardwaj, Ravi
Nonlinear helical dichroism in chiral and achiral molecules
- DOI:
10.1038/s41566-022-01100-0 - 发表时间:
2022-11-28 - 期刊:
- 影响因子:35
- 作者:
Begin, Jean-Luc;Jain, Ashish;Bhardwaj, Ravi - 通讯作者:
Bhardwaj, Ravi
Impact of Fly Ash Composition on Mercury Speciation in Simulated Flue Gas
- DOI:
10.3155/1047-3289.59.11.1331 - 发表时间:
2009-11-01 - 期刊:
- 影响因子:2.7
- 作者:
Bhardwaj, Ravi;Chen, Xihua;Vidic, Radisav D. - 通讯作者:
Vidic, Radisav D.
Femtosecond laser induced porosity in poly-methyl methacrylate
- DOI:
10.1016/j.apsusc.2013.06.043 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:6.7
- 作者:
Baset, Farhana;Villafranca, Ana;Bhardwaj, Ravi - 通讯作者:
Bhardwaj, Ravi
In-line fiber microcantilever vibration sensor
- DOI:
10.1063/1.4832342 - 发表时间:
2013-11-18 - 期刊:
- 影响因子:4
- 作者:
Lu, Ping;Xu, Yanping;Bhardwaj, Ravi - 通讯作者:
Bhardwaj, Ravi
Bhardwaj, Ravi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bhardwaj, Ravi', 18)}}的其他基金
Structured light-matter interactions: from fundamentals to applications
结构光-物质相互作用:从基础到应用
- 批准号:
RGPIN-2021-04308 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Structured light-matter interactions: from fundamentals to applications
结构光-物质相互作用:从基础到应用
- 批准号:
RGPIN-2021-04308 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast photonics - new frontier in science and technology
超快光子学——科技新前沿
- 批准号:
RGPIN-2016-04179 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast photonics - new frontier in science and technology
超快光子学——科技新前沿
- 批准号:
RGPIN-2016-04179 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast photonics - new frontier in science and technology
超快光子学——科技新前沿
- 批准号:
RGPIN-2016-04179 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast photonics - new frontier in science and technology
超快光子学——科技新前沿
- 批准号:
RGPIN-2016-04179 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
CAREER: Enabling New States of Light in Mid-Wave Infrared Photonics for Gas Sensing Applications
职业:在气体传感应用的中波红外光子学中实现新的光态
- 批准号:
2340060 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
New development of Semiconductors Intracenter Photonics
半导体中心光子学新进展
- 批准号:
23H05449 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
AI-powered micro-comb lasers: a new approach to transfer portable atomic clock accuracy in integrated photonics
人工智能驱动的微梳激光器:在集成光子学中传输便携式原子钟精度的新方法
- 批准号:
EP/W028344/1 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Fellowship
High-Speed, Low-Cost, Image Remapping Spectral Domain Full-Field Optical Coherence Tomography for Retinal Imaging
用于视网膜成像的高速、低成本图像重映射谱域全场光学相干断层扫描
- 批准号:
10670648 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Extraordinary Dispersion Engineering In Enabling Ultrafast Swept Source visiblelight Optical Coherence Tomography
非凡的色散工程实现超快扫频源可见光光学相干断层扫描
- 批准号:
10698705 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Exploring concepts in nanophotonics and metamaterials to create a 'super-scintillator' for time-of-flight positron emission tomography
探索纳米光子学和超材料概念,创建用于飞行时间正电子发射断层扫描的“超级闪烁体”
- 批准号:
10509318 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Light-guide Image Processing (LIP) 3D printed snapshot spectrometer for molecular imaging
用于分子成像的光导图像处理 (LIP) 3D 打印快照光谱仪
- 批准号:
10447267 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
2022 Photosensory Receptors and Signal Transduction GRC/GRS
2022 光敏感受器和信号转导GRC/GRS
- 批准号:
10377057 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
2022 Photosensory Receptors and Signal Transduction GRC/GRS
2022 光敏感受器和信号转导GRC/GRS
- 批准号:
10545068 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Center of Excellence for High Throughput Proteogenomic Characterization
高通量蛋白质组表征卓越中心
- 批准号:
10643840 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别: