Fault detection and diagnosis (FDD) system for end of production line testing of alternators
用于交流发电机生产线末端测试的故障检测和诊断 (FDD) 系统
基本信息
- 批准号:486107-2015
- 负责人:
- 金额:$ 7.63万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Product quality and reliability continues to be one of the top priorities for auto manufacturers, and these must**be maintained despite competitive pressures and the need for higher manufacturing efficiency and lower**production costs. As the Original Equipment Manufacturers (OEMs) move to leaner structures, the demands**placed on their equipment suppliers to assure quality and reliability is increasing. Typically the automotive**suppliers have fewer internal resources than OEMs with less capability and expertise to perform the required**quality and reliability analysis.****This proposal is a continuation of a project with D&V Electronics on developing Fault Detection and**Diagnosis (FDD) capabilities for end of production line testing of alternators. This cooperation has so far**resulted in the development of an algorithm referred to as the Industrial Extended Multi-Scale Principle**Components Analysis (IEMSPCA) that has previously been applied to automotive starters. Both vibration and**sound measurement were implemented in IEMSPCA. It performed FDD analysis in less than 15 seconds and**has achieved more than 96% detection success rate when applied to known faults on 26377 starter test cases.****In this project the IEMSPCA will be further developed to be able to detect, diagnose, characterize and adapt to**unknown as well as previously known fault conditions occurring during end-of-line testing of alternators.**Intelligent strategies such as deep learning will be applied and a larger array of signals including vibration,**sound, voltage, and current measurements will be used. Model-based strategies will be applied for improving**diagnosis capabilities for a select range of fault conditions. The research outcomes will be implemented on a**D&V Electronics test cell platform.
产品质量和可靠性仍然是汽车制造商的首要任务之一,尽管面临竞争压力,需要更高的制造效率和更低的生产成本,但必须**保持这些。随着原始设备制造商(OEM)转向更精简的结构,对其设备供应商确保质量和可靠性的要求**正在增加。通常,汽车**供应商的内部资源比OEM少,执行所需的**质量和可靠性分析的能力和专业知识较少。*本提案是D&V Electronics与D&V Electronics关于开发交流发电机生产线末端测试的故障检测和**诊断(FDD)能力的项目的延续。到目前为止,这种合作**导致了一种称为工业扩展多尺度原理**成分分析(IEMSPCA)的算法的开发,该算法以前已应用于汽车起动器。在IEMSPCA中实现了振动和**声测量。它在不到15秒的时间内进行故障诊断分析,**在26377个起动机测试案例上应用于已知故障时,检测成功率达到96%以上。*在该项目中,IEMSPCA将进一步发展,能够检测、诊断、表征和适应交流发电机线端测试过程中发生的**未知和先前已知的故障情况。**将应用深度学习等智能策略,并将使用更大的信号阵列,包括振动、**声音、电压和电流测量。将应用基于模型的策略来提高**针对选定范围的故障条件的诊断能力。研究成果将在**D&V电子测试单元平台上实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Habibi, Saeid其他文献
Kalman and Smooth Variable Structure Filters for Robust Estimation
- DOI:
10.1109/taes.2014.110768 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:4.4
- 作者:
Gadsden, Stephen Andrew;Habibi, Saeid;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Low Temperature, Current Dependent Battery State Estimation Using Interacting Multiple Model Strategy
- DOI:
10.1109/access.2021.3095938 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Messing, Marvin;Rahimifard, Sara;Habibi, Saeid - 通讯作者:
Habibi, Saeid
Parameter identification in a high performance hydrostatic actuation system using the Unscented Kalman Filter
- DOI:
10.1139/tcsme-2006-0024 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:0.9
- 作者:
Chinniah, Yuvin;Habibi, Saeid;Sampson, Eric - 通讯作者:
Sampson, Eric
Estimating battery state of health using electrochemical impedance spectroscopy and the relaxation effect
- DOI:
10.1016/j.est.2021.103210 - 发表时间:
2021-09-10 - 期刊:
- 影响因子:9.4
- 作者:
Messing, Marvin;Shoa, Tina;Habibi, Saeid - 通讯作者:
Habibi, Saeid
Inner-Loop Control for Electro-Hydraulic Actuation Systems
- DOI:
10.1115/1.4001338 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:1.7
- 作者:
El Sayed, Mohammed A.;Habibi, Saeid - 通讯作者:
Habibi, Saeid
Habibi, Saeid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Habibi, Saeid', 18)}}的其他基金
Advanced integrated Control and Monitoring of Actuation Systems
驱动系统的先进集成控制和监控
- 批准号:
RGPIN-2020-05735 - 财政年份:2022
- 资助金额:
$ 7.63万 - 项目类别:
Discovery Grants Program - Individual
Maximizing Information Extraction in Smart Condition Monitoring Systems
最大限度地提取智能状态监测系统中的信息
- 批准号:
CRC-2020-00127 - 财政年份:2022
- 资助金额:
$ 7.63万 - 项目类别:
Canada Research Chairs
Advanced integrated Control and Monitoring of Actuation Systems
驱动系统的先进集成控制和监控
- 批准号:
RGPIN-2020-05735 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
Discovery Grants Program - Individual
Maximizing Information Extraction In Smart Condition Monitoring Systems
最大限度地提取智能状态监测系统中的信息
- 批准号:
CRC-2020-00127 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
Canada Research Chairs
Condition monitoring and testing of powertrain elements
动力总成元件的状态监测和测试
- 批准号:
549016-2019 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
Alliance Grants
Hybrid Electric Vehicle Powertrain Design and Development
混合动力电动汽车动力总成设计与开发
- 批准号:
482038-2016 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
Collaborative Research and Training Experience
Tool for qualitative performance comparison of internal combustion engines components using optimized engine calibration and condition monitoring
使用优化的发动机校准和状态监测对内燃机部件进行定性性能比较的工具
- 批准号:
522411-2017 - 财政年份:2020
- 资助金额:
$ 7.63万 - 项目类别:
Collaborative Research and Development Grants
Condition monitoring and testing of powertrain elements
动力总成元件的状态监测和测试
- 批准号:
549016-2019 - 财政年份:2020
- 资助金额:
$ 7.63万 - 项目类别:
Alliance Grants
Advanced integrated Control and Monitoring of Actuation Systems
驱动系统的先进集成控制和监控
- 批准号:
RGPIN-2020-05735 - 财政年份:2020
- 资助金额:
$ 7.63万 - 项目类别:
Discovery Grants Program - Individual
Maximizing Information Extraction in Smart Condition Monitoring Systems
最大限度地提取智能状态监测系统中的信息
- 批准号:
1000233074-2019 - 财政年份:2020
- 资助金额:
$ 7.63万 - 项目类别:
Canada Research Chairs
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
膀胱癌高表达基因UPK3A的筛选、鉴定和相关研究
- 批准号:81101922
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
图像分类方法研究及其在色情监测中的应用
- 批准号:61172103
- 批准年份:2011
- 资助金额:62.0 万元
- 项目类别:面上项目
基于隐半马尔科夫模型的无线传感器网络入侵检测系统研究
- 批准号:61101083
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于指令层次的网页木马渗透攻击机理分析与检测方法研究
- 批准号:61003217
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
超高速正则表达式匹配技术研究
- 批准号:61073184
- 批准年份:2010
- 资助金额:12.0 万元
- 项目类别:面上项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
- 批准号:90818016
- 批准年份:2008
- 资助金额:50.0 万元
- 项目类别:重大研究计划
制冷系统故障诊断关键问题的定量研究
- 批准号:50876059
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
- 批准号:
RGPIN-2019-03967 - 财政年份:2022
- 资助金额:
$ 7.63万 - 项目类别:
Discovery Grants Program - Individual
Sensor Fault Detection and Diagnosis for Enhanced Safety of Autonomous Systems
用于增强自主系统安全性的传感器故障检测和诊断
- 批准号:
2031333 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
- 批准号:
RGPIN-2019-03967 - 财政年份:2021
- 资助金额:
$ 7.63万 - 项目类别:
Discovery Grants Program - Individual
RII Track-4: Adaptive Fault Detection and Diagnosis Based on Growing Gaussian Mixture Regressions for High-Performance HVAC Systems
RII Track-4:高性能 HVAC 系统基于增长高斯混合回归的自适应故障检测和诊断
- 批准号:
1929209 - 财政年份:2020
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
- 批准号:
RGPIN-2019-03967 - 财政年份:2020
- 资助金额:
$ 7.63万 - 项目类别:
Discovery Grants Program - Individual
Model Based Fault Detection and Diagnosis for Planetary Exploration Rovers Using Inverse Simulation
使用逆仿真的基于模型的行星探索漫游车故障检测和诊断
- 批准号:
2279886 - 财政年份:2020
- 资助金额:
$ 7.63万 - 项目类别:
Studentship
Fault Detection and Diagnosis for Uncertain Nonlinear Systems Using Set-Based State Estimation
使用基于集合的状态估计对不确定非线性系统进行故障检测和诊断
- 批准号:
1949748 - 财政年份:2019
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
Fault Detection and Diagnosis for Uncertain Nonlinear Systems Using Set-Based State Estimation
使用基于集合的状态估计对不确定非线性系统进行故障检测和诊断
- 批准号:
1826011 - 财政年份:2019
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
- 批准号:
RGPIN-2019-03967 - 财政年份:2019
- 资助金额:
$ 7.63万 - 项目类别:
Discovery Grants Program - Individual
Model-based fault detection and diagnosis of HVAC systems
基于模型的 HVAC 系统故障检测和诊断
- 批准号:
18K13879 - 财政年份:2018
- 资助金额:
$ 7.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists