Statistical methods for time series of counts with long-range dependence arising from health care settings
卫生保健机构产生的具有长期依赖性的计数时间序列的统计方法
基本信息
- 批准号:RGPIN-2017-04992
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is an initiative to provide statistical models and inferential tools to an important type of data that arises in many fields of applications. Specifically, this proposal is intended to deal with the statistical analysis of data sets in which the outcome of interest is a long series of temporally and spatially correlated counts with a complex feature known as Long-Range Dependence (LRD) or Long-Memory behavior. ***In general, data in the form of time series of counts arise in fields of applications such as: health care performance analysis (e.g., analysis of number of patients served at the emergency department of a hospital or admitted to the hospital); monitoring of environmental pollutants; analysis of data from financial markets (e.g., counts of daily transactions for a given stock); public health surveillance (e.g., surveillance of cause-specific mortality). ******Although there is a considerable and growing attention directed to the statistical modeling and analysis of time series of counts, many of its complex aspects such as the LRD feature have not been fully addressed. The LRD feature manifests itself through the correlation structure of the data, and such behavior has been observed in some data arising from financial markets and from health care services. For instance, the number of patients at an emergence department at 8am, observed daily over several years, may sometimes exhibit an LRD behavior. In addition to the temporal LRD feature, such data may also have spatial correlations when collected at several facilities over a geographical area of interest. ******In this proposal, I intend to provide a suite of statistical modeling, inference, and surveillance tools along with software packages to implement it for spatio-temporal count data with LRD features. Specifically, I will study regression models that handle short-term (spatial and temporal) dependencies in counts through spatial and temporal ARMA(p,q) modeling approach while the temporal LRD feature is dealt with via fractional Gaussian noises (FGN) and related long-memory processes. This is an appealing approach, as often the LRD is due to a background latent process in which investigators are not interested in estimating, although statistical methods must account for it as a nuisance process. The FGNs are processes that introduce LRD by using only one parameter, known as the Hurst exponent. Thus, FGNs provide a way of handling LRD while keeping low the number of parameters to be estimated in the model. The methodologies resulting from this research project are expected to aid stakeholders in health care services, and in other areas of applications where such data arise, in making proper decisions based on the correct statistical inferences.
这项提议是为在许多应用领域中出现的一种重要数据提供统计模型和推断工具的举措。具体地说,该建议旨在处理数据集的统计分析,其中感兴趣的结果是一长串时间和空间相关的计数,具有称为长期相关性(LRD)或长记忆行为的复杂特征。*一般而言,在以下应用领域产生计数时间序列形式的数据:卫生保健业绩分析(例如,在医院急诊科就诊或入院的病人数量分析);环境污染物监测;金融市场数据分析(例如,某一特定股票的每日交易量);公共卫生监测(例如,具体原因死亡率的监测)。*尽管对计数时间序列的统计建模和分析引起了越来越多的关注,但它的许多复杂方面,如LRD特征,还没有得到充分解决。LRD特征通过数据的相关性结构表现出来,这种行为已经在金融市场和医疗保健服务的一些数据中观察到。例如,几年来每天观察上午8点急诊科的病人数量,有时可能会表现出LRD行为。除了时间LRD特征外,当在感兴趣的地理区域的几个设施收集时,这种数据还可能具有空间相关性。*在本提案中,我打算提供一套统计建模、推理和监视工具以及软件包,以实现具有LRD特征的时空计数数据。具体地说,我将研究通过空间和时间ARMA(p,q)建模方法处理计数的短期(空间和时间)相关性的回归模型,而时间LRD特征通过分数高斯噪声(FGN)和相关的长记忆过程来处理。这是一种有吸引力的方法,因为劳资关系通常是由于背景潜伏的过程,调查人员对估计不感兴趣,尽管统计方法必须将其作为一个滋扰过程来考虑。FGNs是只使用一个称为赫斯特指数的参数来引入LRD的过程。因此,FGNs提供了一种处理LRD的方法,同时将模型中要估计的参数数量保持在较低水平。这一研究项目产生的方法有望帮助卫生保健服务和出现此类数据的其他应用领域的利益相关者根据正确的统计推断做出适当的决定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
hussein, abdulkadir其他文献
hussein, abdulkadir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('hussein, abdulkadir', 18)}}的其他基金
Statistical methods for time series of counts with long-range dependence arising from health care settings
卫生保健机构产生的具有长期依赖性的计数时间序列的统计方法
- 批准号:
RGPIN-2017-04992 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for time series of counts with long-range dependence arising from health care settings
卫生保健机构产生的具有长期依赖性的计数时间序列的统计方法
- 批准号:
RGPIN-2017-04992 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrated experimental and statistical tools for ultra-high-throughput spatial transcriptomics
用于超高通量空间转录组学的集成实验和统计工具
- 批准号:
10727130 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
- 批准号:
10594266 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:
10740240 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Statistical Methods for Biomarkers Identification Using High-resolution Diffusion MRI
使用高分辨率扩散 MRI 识别生物标志物的统计方法
- 批准号:
10667994 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Interpretable Bayesian Non-linear statistical learning models for multi-omics data integration
用于多组学数据集成的可解释贝叶斯非线性统计学习模型
- 批准号:
10714882 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Statistical methods to understand changes in dietary patterns over time and cardiovascular disease risk among understudied populations
了解受研究人群饮食模式随时间变化和心血管疾病风险的统计方法
- 批准号:
10571108 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Statistical Methods for Advancing HIV Prevention
促进艾滋病毒预防的统计方法
- 批准号:
10700642 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
PPDs Application for the Transplantation Statistical and Clinical Coordinating Center (T-SCCC) (U01 Clinical Trial Not Allowed)
移植统计和临床协调中心(T-SCCC)的 PPD 申请(不允许 U01 临床试验)
- 批准号:
10745577 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Statistical methods to characterize causal mechanisms by which air pollution affects the recurrence of cardiovascular events
描述空气污染影响心血管事件复发因果机制的统计方法
- 批准号:
10660281 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别: