Statistical methods for time series of counts with long-range dependence arising from health care settings
卫生保健机构产生的具有长期依赖性的计数时间序列的统计方法
基本信息
- 批准号:RGPIN-2017-04992
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is an initiative to provide statistical models and inferential tools to an important type of data that arises in many fields of applications. Specifically, this proposal is intended to deal with the statistical analysis of data sets in which the outcome of interest is a long series of temporally and spatially correlated counts with a complex feature known as Long-Range Dependence (LRD) or Long-Memory behavior. In general, data in the form of time series of counts arise in fields of applications such as: health care performance analysis (e.g., analysis of number of patients served at the emergency department of a hospital or admitted to the hospital); monitoring of environmental pollutants; analysis of data from financial markets (e.g., counts of daily transactions for a given stock); public health surveillance (e.g., surveillance of cause-specific mortality). Although there is a considerable and growing attention directed to the statistical modeling and analysis of time series of counts, many of its complex aspects such as the LRD feature have not been fully addressed. The LRD feature manifests itself through the correlation structure of the data, and such behavior has been observed in some data arising from financial markets and from health care services. For instance, the number of patients at an emergence department at 8am, observed daily over several years, may sometimes exhibit an LRD behavior. In addition to the temporal LRD feature, such data may also have spatial correlations when collected at several facilities over a geographical area of interest. In this proposal, I intend to provide a suite of statistical modeling, inference, and surveillance tools along with software packages to implement it for spatio-temporal count data with LRD features. Specifically, I will study regression models that handle short-term (spatial and temporal) dependencies in counts through spatial and temporal ARMA(p,q) modeling approach while the temporal LRD feature is dealt with via fractional Gaussian noises (FGN) and related long-memory processes. This is an appealing approach, as often the LRD is due to a background latent process in which investigators are not interested in estimating, although statistical methods must account for it as a nuisance process. The FGNs are processes that introduce LRD by using only one parameter, known as the Hurst exponent. Thus, FGNs provide a way of handling LRD while keeping low the number of parameters to be estimated in the model. The methodologies resulting from this research project are expected to aid stakeholders in health care services, and in other areas of applications where such data arise, in making proper decisions based on the correct statistical inferences.
该提案是一项倡议,旨在为许多应用领域中出现的重要数据类型提供统计模型和推理工具。具体而言,该建议旨在处理数据集的统计分析,其中感兴趣的结果是一长串时间和空间相关的计数,具有称为长距离依赖性(LRD)或长记忆行为的复杂特征。 通常,计数的时间序列形式的数据出现在应用领域中,诸如:分析在医院急诊部服务的或入院的患者的数量);监测环境污染物;分析来自金融市场的数据(例如, 给定股票的每日交易计数);公共卫生监视(例如, 具体原因死亡率的监测)。虽然有一个相当大的和越来越多的关注指向计数的时间序列的统计建模和分析,其许多复杂的方面,如LRD功能尚未得到充分解决。 LRD特征通过数据的相关性结构表现出来,并且已经在来自金融市场和医疗保健服务的一些数据中观察到这种行为。例如,几年来每天早上8点在急诊室观察的患者数量有时可能会表现出LRD行为。 除了时间LRD特征之外,当在感兴趣的地理区域上的多个设施处收集时,这样的数据还可以具有空间相关性。在这个建议中,我打算提供一套统计建模,推理和监视工具沿着的软件包,以实现它的时空计数数据与LRD功能。具体来说,我将研究回归模型,通过空间和时间的阿尔马(p,q)建模方法处理短期(空间和时间)的依赖性计数,而时间的LRD功能是通过分数高斯噪声(FGN)和相关的长记忆过程处理。这是一个有吸引力的方法,因为LRD通常是由于背景潜在的过程中,调查人员不感兴趣的估计,虽然统计方法必须考虑它作为一个滋扰过程。FGN是通过仅使用一个参数(称为Hurst指数)引入LRD的过程。因此,FGN提供了一种处理LRD的方式,同时保持模型中待估计的参数的数量较低。从这个研究项目产生的方法,预计将帮助利益相关者在医疗保健服务,并在其他领域的应用程序中出现这样的数据,在正确的统计推断的基础上作出适当的决定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
hussein, abdulkadir其他文献
hussein, abdulkadir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('hussein, abdulkadir', 18)}}的其他基金
Statistical methods for time series of counts with long-range dependence arising from health care settings
卫生保健机构产生的具有长期依赖性的计数时间序列的统计方法
- 批准号:
RGPIN-2017-04992 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for time series of counts with long-range dependence arising from health care settings
卫生保健机构产生的具有长期依赖性的计数时间序列的统计方法
- 批准号:
RGPIN-2017-04992 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrated experimental and statistical tools for ultra-high-throughput spatial transcriptomics
用于超高通量空间转录组学的集成实验和统计工具
- 批准号:
10727130 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
- 批准号:
10594266 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:
10740240 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Statistical Methods for Biomarkers Identification Using High-resolution Diffusion MRI
使用高分辨率扩散 MRI 识别生物标志物的统计方法
- 批准号:
10667994 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Interpretable Bayesian Non-linear statistical learning models for multi-omics data integration
用于多组学数据集成的可解释贝叶斯非线性统计学习模型
- 批准号:
10714882 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Statistical methods to understand changes in dietary patterns over time and cardiovascular disease risk among understudied populations
了解受研究人群饮食模式随时间变化和心血管疾病风险的统计方法
- 批准号:
10571108 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Statistical Methods for Advancing HIV Prevention
促进艾滋病毒预防的统计方法
- 批准号:
10700642 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
PPDs Application for the Transplantation Statistical and Clinical Coordinating Center (T-SCCC) (U01 Clinical Trial Not Allowed)
移植统计和临床协调中心(T-SCCC)的 PPD 申请(不允许 U01 临床试验)
- 批准号:
10745577 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Statistical methods to characterize causal mechanisms by which air pollution affects the recurrence of cardiovascular events
描述空气污染影响心血管事件复发因果机制的统计方法
- 批准号:
10660281 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别: