Low Power Logic Operations through Pure Spin Currents

通过纯自旋电流进行低功耗逻辑运算

基本信息

  • 批准号:
    RGPIN-2017-04178
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The concept of spin-based electronics has reached a stage where it is making transformational changes in advanced science and high-efficiency technology, such as magnetoresistance field sensors, hard disk drive and magnetic random access memory. A spin is an innate quantum property of every electron, and it is already flowing within every electronic device but rarely harvested. By incorporating the spin degree of freedom into existing electronic devices such as central processing units (CPUs), they can gain novel functionalities compared to the present charge-based technologies. Furthermore, modern semiconductor electronics have reached a bottleneck in clock frequency, mainly because only limited heat dissipation is achievable. For example, Intel CPUs reached 3GHz speed a decade ago, yet has been stalled at this level ever since (while using multicore solutions) due to the thermal dissipation limits at about 4GHz. This is termed the “power wall” — the defining limit to modern CPU processing power. In contrast, spintronic devices are inherently immune to this issue, i.e., they do not create Joule heating from the diffusive nature. Therefore, devices driven with pure spin currents offer far reduced power consumption than conventional electronic devices; however, spintronic devices present other technological challenges. The limited spin transfer efficiency into and across the channels is the most important, and a fundamental understanding of the spin transport processes through various media and interfaces is critical for further developing these devices. ***The proposed research plan will carry out pioneering spin transport studies in a wider range of atomically engineered complex materials and devices, which are expected to show advanced functionality, thereby leading to spin-based electronics that are more versatile and more energy efficient. Because spins already flow inside every electronic device, the technology transfer from classical electronics to spin electronics only requires minimal changes to existing production lines in the world. The technologies developed in this program are thus fully compatible with modern semiconductor technologies and can be readily adopted by major companies. The projected industries to pursue (for potential collaborations as well as HQP positions) include those information giants such as Intel, IBM, Hitachi, Global Foundries, who already have strategic spintronics development initiated. For Canada, this means more employment and more visibility in the world. Ultimately, spin-based processors are not to fully replace modern silicon based processors, but to build on their existing strengths and improve only very critical processing components. This further ensures fast technology transfer. Together, they will make the information processing greener yet more powerful, putting the Moore's law back on its due track.
基于旋转的电子设备的概念已经达到了一个阶段,它正在使高级科学和高效技术的变革变化,例如磁场磁场传感器,硬盘驱动器和磁随机访问记忆。自旋是每个电子的先天量子特性,并且它已经在每个电子设备中流动,但很少收获。通过将自旋程度纳入现有的电子设备(例如中央处理单元(CPU))中,与目前的基于电荷的技术相比,它们可以获得新颖的功能。此外,现代半导体电子设备的时钟频率达到了瓶颈,这主要是因为仅实现了有限的热量耗散。例如,十年前的英特尔CPU达到了3GHz速度,但由于热量耗散限制约为4GHz,因此(在使用多核解决方案)此后一直停滞在此水平上。这被称为“电力墙”,这是现代CPU处理能力的定义限制。相比之下,Spintronic设备本质上是该问题的免疫学,即,它们不会从不同的性质中产生焦耳加热。因此,用纯自旋电流驱动的设备比传统的电子设备提供的功耗大大降低。但是,自旋设备带来了其他技术挑战。有限的自旋传输效率是最重要的,并且通过各种媒体和接口对旋转传输过程的基本了解对于进一步开发这些设备至关重要。 ***拟议的研究计划将在更广泛的原子设计的复杂材料和设备范围内进行开创性的自旋运输研究,这些材料和设备有望显示出高级功能,从而导致基于自旋的电子产品,这些电子设备更广泛,更节能。由于旋转已经在每个电子设备内部流动,因此从古典电子到旋转电子设备的技术转移只需要对世界现有生产线的最小变化。因此,该计划中开发的技术与现代半导体技术完全兼容,并且很容易被主要公司采用。预计购买的行业(用于潜在的合作以及HQP职位)包括Intel,IBM,IBM,Hitachi,Global Foundries等信息巨头,他们已经发起了战略性的Spintronics开发。对于加拿大来说,这意味着在世界上更多的就业和更多的知名度。最终,基于旋转的处理器不是要完全取代现代硅的处理器,而是基于其现有优势并仅改善非常关键的加工组件。他们将共同使信息处理更加绿色,更强大,使摩尔的法律重新恢复正当的轨道。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

miao, guoxing其他文献

miao, guoxing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('miao, guoxing', 18)}}的其他基金

Low Power Logic Operations through Pure Spin Currents
通过纯自旋电流进行低功耗逻辑运算
  • 批准号:
    RGPIN-2017-04178
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power Logic Operations through Pure Spin Currents
通过纯自旋电流进行低功耗逻辑运算
  • 批准号:
    RGPIN-2017-04178
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

主体异质性视角下国家战略科技力量推进关键核心技术创新的效应、路径与对策研究
  • 批准号:
    72304276
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
社交媒体下基于力量不均衡的网络欺凌感知技术研究
  • 批准号:
    62302223
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于切平面受限Power图的快速重新网格化方法
  • 批准号:
    62372152
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
极端天气下电热能量网络容灾能力量化评估与韧性提升策略
  • 批准号:
    62303182
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
多维度参数耦合废锂离子电池循环利用过程降碳潜力量化评价方法
  • 批准号:
    52300232
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Study on a Low Power Variable Logic Circuit Using Neuron CMOS Inverters
采用Neuron CMOS反相器的低功耗可变逻辑电路的研究
  • 批准号:
    22K04223
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Low Power Logic Operations through Pure Spin Currents
通过纯自旋电流进行低功耗逻辑运算
  • 批准号:
    RGPIN-2017-04178
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a high-speed and ultra-low-power die-hard logic LSI fundamental technology for IoT applications
开发适用于物联网应用的高速、超低功耗顽固逻辑LSI基础技术
  • 批准号:
    21H04868
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Low Power Logic Operations through Pure Spin Currents
通过纯自旋电流进行低功耗逻辑运算
  • 批准号:
    RGPIN-2017-04178
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power Logic Operations through Pure Spin Currents
通过纯自旋电流进行低功耗逻辑运算
  • 批准号:
    RGPIN-2017-04178
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了