Low Power Logic Operations through Pure Spin Currents

通过纯自旋电流进行低功耗逻辑运算

基本信息

  • 批准号:
    RGPIN-2017-04178
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The concept of spin-based electronics has reached a stage where it is making transformational changes in advanced science and high-efficiency technology, such as magnetoresistance field sensors, hard disk drive and magnetic random access memory. A spin is an innate quantum property of every electron, and it is already flowing within every electronic device but rarely harvested. By incorporating the spin degree of freedom into existing electronic devices such as central processing units (CPUs), they can gain novel functionalities compared to the present charge-based technologies. Furthermore, modern semiconductor electronics have reached a bottleneck in clock frequency, mainly because only limited heat dissipation is achievable. For example, Intel CPUs reached 3GHz speed a decade ago, yet has been stalled at this level ever since (while using multicore solutions) due to the thermal dissipation limits at about 4GHz. This is termed the “power wall” the defining limit to modern CPU processing power. In contrast, spintronic devices are inherently immune to this issue, i.e., they do not create Joule heating from the diffusive nature. Therefore, devices driven with pure spin currents offer far reduced power consumption than conventional electronic devices; however, spintronic devices present other technological challenges. The limited spin transfer efficiency into and across the channels is the most important, and a fundamental understanding of the spin transport processes through various media and interfaces is critical for further developing these devices. The proposed research plan will carry out pioneering spin transport studies in a wider range of atomically engineered complex materials and devices, which are expected to show advanced functionality, thereby leading to spin-based electronics that are more versatile and more energy efficient. Because spins already flow inside every electronic device, the technology transfer from classical electronics to spin electronics only requires minimal changes to existing production lines in the world. The technologies developed in this program are thus fully compatible with modern semiconductor technologies and can be readily adopted by major companies. The projected industries to pursue (for potential collaborations as well as HQP positions) include those information giants such as Intel, IBM, Hitachi, Global Foundries, who already have strategic spintronics development initiated. For Canada, this means more employment and more visibility in the world. Ultimately, spin-based processors are not to fully replace modern silicon based processors, but to build on their existing strengths and improve only very critical processing components. This further ensures fast technology transfer. Together, they will make the information processing greener yet more powerful, putting the Moore's law back on its due track.
基于自旋的电子学概念已经发展到一个阶段,它正在使先进科学和高效率技术发生变革,如磁阻场传感器、硬盘驱动器和磁性随机存取存储器。自旋是每个电子固有的量子特性,它已经在每个电子设备中流动,但很少被捕获。通过将自旋自由度结合到现有的电子设备中,例如中央处理单元(CPU),与目前基于电荷的技术相比,它们可以获得新的功能。此外,现代半导体电子器件已经达到时钟频率的瓶颈,主要是因为只能实现有限的散热。例如,英特尔CPU在十年前达到了3GHz的速度,但由于大约4GHz的散热限制,从那时起(在使用多核解决方案时)一直停滞在这个水平。这被称为“功率墙”,是现代CPU处理能力的定义性限制。相反,自旋电子器件固有地不受这个问题的影响,即,它们不会因扩散性质而产生焦耳热。因此,用纯自旋电流驱动的器件提供比传统电子器件低得多的功耗;然而,自旋电子器件提出了其他技术挑战。有限的自旋转移效率进入和穿过通道是最重要的,通过各种介质和界面的自旋输运过程的基本理解是进一步开发这些设备的关键。 拟议的研究计划将在更广泛的原子工程复杂材料和器件中开展开创性的自旋输运研究,预计这些材料和器件将显示出先进的功能,从而导致基于自旋的电子产品更加通用和节能。由于自旋已经在每个电子设备中流动,从经典电子到自旋电子的技术转移只需要对世界上现有的生产线进行最小的改变。因此,该计划中开发的技术与现代半导体技术完全兼容,可以很容易地被大公司采用。预计的行业追求(潜在的合作以及HQP职位)包括那些信息巨头,如英特尔,IBM,日立,全球铸造厂,谁已经开始了战略自旋电子学的发展。对加拿大来说,这意味着更多的就业机会和在世界上更高的知名度。最终,基于自旋的处理器不会完全取代现代硅基处理器,而是建立在现有的优势之上,只改进非常关键的处理组件。这进一步确保了快速的技术转让。它们将共同使信息处理变得更加环保、更加强大,使摩尔定律回到应有的轨道上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

miao, guoxing其他文献

miao, guoxing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('miao, guoxing', 18)}}的其他基金

Low Power Logic Operations through Pure Spin Currents
通过纯自旋电流进行低功耗逻辑运算
  • 批准号:
    RGPIN-2017-04178
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power Logic Operations through Pure Spin Currents
通过纯自旋电流进行低功耗逻辑运算
  • 批准号:
    RGPIN-2017-04178
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于切平面受限Power图的快速重新网格化方法
  • 批准号:
    62372152
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多约束Power图快速计算算法研究
  • 批准号:
    61972128
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
网格曲面上质心Power图的快速计算及应用
  • 批准号:
    61772016
  • 批准年份:
    2017
  • 资助金额:
    46.0 万元
  • 项目类别:
    面上项目
离散最优传输问题,闵可夫斯基问题和蒙奇-安培方程中的变分原理和Power图
  • 批准号:
    11371220
  • 批准年份:
    2013
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
云计算环境下数据中心的power capping关键问题研究
  • 批准号:
    61272460
  • 批准年份:
    2012
  • 资助金额:
    81.0 万元
  • 项目类别:
    面上项目
基于信道Time/Power度量指标的TOA测距误差模型及其应用研究
  • 批准号:
    61172049
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Power MEMS 微转子-轴承系统的非线性动力学研究
  • 批准号:
    10872031
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
准气体动力循环超高能量密度Power MEMS的研究
  • 批准号:
    50575231
  • 批准年份:
    2005
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
冷热源Power MEMS应用基础研究
  • 批准号:
    50275135
  • 批准年份:
    2002
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目

相似海外基金

A Study on a Low Power Variable Logic Circuit Using Neuron CMOS Inverters
采用Neuron CMOS反相器的低功耗可变逻辑电路的研究
  • 批准号:
    22K04223
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Low Power Logic Operations through Pure Spin Currents
通过纯自旋电流进行低功耗逻辑运算
  • 批准号:
    RGPIN-2017-04178
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a high-speed and ultra-low-power die-hard logic LSI fundamental technology for IoT applications
开发适用于物联网应用的高速、超低功耗顽固逻辑LSI基础技术
  • 批准号:
    21H04868
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Low Power Logic Operations through Pure Spin Currents
通过纯自旋电流进行低功耗逻辑运算
  • 批准号:
    RGPIN-2017-04178
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power Logic Operations through Pure Spin Currents
通过纯自旋电流进行低功耗逻辑运算
  • 批准号:
    RGPIN-2017-04178
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Design methodology of noise-driven logic circuits toward ultra-low-power computing systems
面向超低功耗计算系统的噪声驱动逻辑电路设计方法
  • 批准号:
    18H03302
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
I-Corps: Tunnel FET-based transistor logic for ultra-low-power applications
I-Corps:适用于超低功耗应用的基于隧道 FET 的晶体管逻辑
  • 批准号:
    1806182
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Development of Power Consumption Model of Low-voltage and Low-power Sub-threshold Adiabatic Logic
低压低功耗亚阈值绝热逻辑功耗模型的研制
  • 批准号:
    17K14664
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Low Power Logic Operations through Pure Spin Currents
通过纯自旋电流进行低功耗逻辑运算
  • 批准号:
    RGPIN-2017-04178
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Low-power logic gates in thin film technologies
薄膜技术中的低功耗逻辑门
  • 批准号:
    500171-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Idea to Innovation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了