Multimodal image analysis and modeling of thin bone structures in the human skeleton
人体骨骼中薄骨结构的多模态图像分析和建模
基本信息
- 批准号:RGPIN-2016-06543
- 负责人:
- 金额:$ 2.77万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer modeling of the human anatomy is a powerful approach to understanding structure and function. The finite element (FE) method enables representation of geometric and material complexities of the musculoskeletal system, specifically in models generated from 3D medical imaging data. Experimental validation has demonstrated that FE analysis can model musculoskeletal mechanical behaviour under simplified loading and boundary conditions. We have developed image processing methods that accurately reflect thin bone geometry and density necessary for specimen-specific FE modeling, despite resolution limitations imposed with clinical CT imaging. This, combined with highly automated workflows, has allowed the generation of multiple FE models that quantify the mechanical behaviour of these intricate structures. Yet, to represent physiologic behaviour of the human musculoskeletal anatomy requires complex load and boundary conditions. Further, understanding the mechanical behaviour of these structures is critical even after failure has occurred. This research seeks to integrate multimodal image analysis and FE modeling to accurately depict the mechanical behaviour of thin bone structures under complex physiologic loading and post fracture stability. In this work we propose to address the following specific aims:****1. To integrate multimodal information identified through medical imaging and musculoskeletal modeling simulations to yield an improved realization of the domain of physiologic load and boundary conditions in thin bone structures, specifically the craniomaxillofacial skeleton (CMFS) and pelvis.****2. To quantify the sensitivity of thin bone models to load and boundary conditions utilizing a Design of Experiments approach to recognize critical fracture risk scenarios.****3. To evaluate post yield stability in thin bone structures utilizing sequential image analysis and create constitutive models which can represent failure and compaction in FE analysis.****Ultimately this research aims to establish a robust experimentally validated platform that provides accurate representation of the physiological mechanical behaviour of human thin bone structures. This has important application to understanding the impact of injury and disease on thin bone structures, the utilization of new and existing technologies for their repair or regeneration and will motivate the continued use of FE modeling in biomedical research and design.**
人体解剖学的计算机建模是理解结构和功能的有力方法。有限元(FE)方法能够表示肌肉骨骼系统的几何和材料复杂性,特别是在3D医学成像数据生成的模型中。实验验证表明,有限元分析可以模拟简化载荷和边界条件下的肌肉骨骼力学行为。尽管临床CT成像存在分辨率限制,但我们已经开发了图像处理方法,可以准确反映样品特异性FE建模所需的薄骨几何形状和密度。这与高度自动化的工作流程相结合,可以生成多个有限元模型,量化这些复杂结构的力学行为。然而,要表征人体肌肉骨骼解剖的生理行为,需要复杂的载荷和边界条件。此外,即使在发生破坏之后,了解这些结构的力学行为也是至关重要的。本研究旨在整合多模态图像分析和有限元建模,以准确描述薄骨结构在复杂生理载荷和骨折后稳定性下的力学行为。在这项工作中,我们建议解决以下具体目标:****1。整合通过医学成像和肌肉骨骼建模模拟识别的多模态信息,以改善薄骨结构,特别是颅颌面骨骼(CMFS)和骨盆的生理负载和边界条件领域的实现。****2。利用实验设计方法来识别临界断裂风险情景,量化薄骨模型对载荷和边界条件的敏感性。****利用序列图像分析来评估薄骨结构屈服后的稳定性,并在有限元分析中创建可以代表破坏和压实的本构模型。****本研究的最终目的是建立一个强大的实验验证平台,提供人类薄骨结构的生理力学行为的准确表示。这对于理解损伤和疾病对薄骨结构的影响,利用新的和现有的技术进行修复或再生具有重要的应用价值,并将激励在生物医学研究和设计中继续使用有限元模型
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Whyne, Cari其他文献
Improving Resource Utilization for Arthroplasty Care by Leveraging Machine Learning and Optimization: A Systematic Review.
- DOI:
10.1016/j.artd.2023.101116 - 发表时间:
2023-04 - 期刊:
- 影响因子:0
- 作者:
Entezari, Bahar;Koucheki, Robert;Abbas, Aazad;Toor, Jay;Wolfstadt, Jesse I.;Ravi, Bheeshma;Whyne, Cari;Lex, Johnathan R. - 通讯作者:
Lex, Johnathan R.
Machine learning using preoperative patient factors can predict duration of surgery and length of stay for total knee arthroplasty
- DOI:
10.1016/j.ijmedinf.2021.104670 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:4.9
- 作者:
Abbas, Aazad;Mosseri, Jacob;Whyne, Cari - 通讯作者:
Whyne, Cari
Can a partial volume edge effect reduction algorithm improve the repeatability of subject-specific finite element models of femurs obtained from CT data?
- DOI:
10.1080/10255842.2012.673595 - 发表时间:
2014-02-17 - 期刊:
- 影响因子:1.6
- 作者:
Peleg, Eran;Herblum, Ryan;Whyne, Cari - 通讯作者:
Whyne, Cari
Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation.
- DOI:
10.2196/38689 - 发表时间:
2022-08-23 - 期刊:
- 影响因子:0
- 作者:
Alfakir, Abdalrahman;Arrowsmith, Colin;Burns, David;Razmjou, Helen;Hardisty, Michael;Whyne, Cari - 通讯作者:
Whyne, Cari
Generalized method for computation of true thickness and x-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images
- DOI:
10.1088/0031-9155/57/23/8099 - 发表时间:
2012-12-07 - 期刊:
- 影响因子:3.5
- 作者:
Pakdel, Amirreza;Robert, Normand;Whyne, Cari - 通讯作者:
Whyne, Cari
Whyne, Cari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Whyne, Cari', 18)}}的其他基金
Computational and experimental assessment of pelvic stability and optimization of technology to guide reconstruction
骨盆稳定性的计算和实验评估以及指导重建的技术优化
- 批准号:
RGPIN-2022-04993 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Multimodal image analysis and modeling of thin bone structures in the human skeleton
人体骨骼中薄骨结构的多模态图像分析和建模
- 批准号:
RGPIN-2016-06543 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Multimodal image analysis and modeling of thin bone structures in the human skeleton
人体骨骼中薄骨结构的多模态图像分析和建模
- 批准号:
RGPIN-2016-06543 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Shifting the Paradigm in Home Physiotherapy: Implementation and Implications of Adherence Monitoring with Artificial Intelligence
改变家庭物理治疗的范式:人工智能依从性监测的实施和意义
- 批准号:
538866-2019 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Collaborative Health Research Projects
Multimodal image analysis and modeling of thin bone structures in the human skeleton
人体骨骼中薄骨结构的多模态图像分析和建模
- 批准号:
RGPIN-2016-06543 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Shifting the Paradigm in Home Physiotherapy: Implementation and Implications of Adherence Monitoring with Artificial Intelligence
改变家庭物理治疗的范式:人工智能依从性监测的实施和意义
- 批准号:
538866-2019 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Collaborative Health Research Projects
Multimodal image analysis and modeling of thin bone structures in the human skeleton
人体骨骼中薄骨结构的多模态图像分析和建模
- 批准号:
RGPIN-2016-06543 - 财政年份:2017
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Multimodal image analysis and modeling of thin bone structures in the human skeleton
人体骨骼中薄骨结构的多模态图像分析和建模
- 批准号:
RGPIN-2016-06543 - 财政年份:2016
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Development of an essential component for a low cost, high resolution selenium based x-ray imaging system for Western and emerging markets
为西方和新兴市场开发低成本、高分辨率硒基 X 射线成像系统的重要组件
- 批准号:
507012-2016 - 财政年份:2016
- 资助金额:
$ 2.77万 - 项目类别:
Engage Plus Grants Program
相似国自然基金
基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
- 批准号:41904148
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
面向英汉双向跨语言图像检索的文本分析关键技术研究
- 批准号:61170095
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Raw-Image微小物体高精度位姿测量法
- 批准号:61105029
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
关于图像处理模型的目标函数构造及其数值方法研究
- 批准号:11071228
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
双星中性原子探测图像在地磁暴期间的时序演化过程反演分析
- 批准号:40974100
- 批准年份:2009
- 资助金额:45.0 万元
- 项目类别:面上项目
微复型过程中聚合物流动填充机理的可视化实验分析
- 批准号:50975227
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
基于图像的Visuall Hull的立体感实时绘制及其高速图形处理硬件(GPU)的实现机制
- 批准号:60573149
- 批准年份:2005
- 资助金额:21.0 万元
- 项目类别:面上项目
分数阶傅里叶变换多分量图像数字水印研究
- 批准号:60472044
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Developing genetically encodable probes for multimodal tracking of exosomal RNA cargo
开发用于外泌体 RNA 货物多模式追踪的基因可编码探针
- 批准号:
10681827 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
Multimodal dMRI, MRS and MEG studies of language impairment in low-verbal ASD
低语言 ASD 语言障碍的多模态 dMRI、MRS 和 MEG 研究
- 批准号:
10636420 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
Multimodal Analysis of Gestational Health and Placental Injury in Opioid-Affected Pregnancies
阿片类药物影响妊娠的妊娠健康和胎盘损伤的多模态分析
- 批准号:
10750475 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
Dynamic multimodal connectivity analysis of brain networks in focal epilepsy
局灶性癫痫脑网络的动态多模态连接分析
- 批准号:
10678514 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
Early Alzheimers Forecasting from Multimodal Data via Deep Transfer Learning, Evaluated on a Large-Scale Prospective Cohort Study
通过深度迁移学习从多模式数据预测早期阿尔茨海默病,并在大规模前瞻性队列研究中进行评估
- 批准号:
10732306 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
A New Multimodal Molecular Imaging Approach to Guide Intra-Operative Tumor Resection and Post-Operative Treatment Planning
一种新的多模态分子成像方法来指导术中肿瘤切除和术后治疗计划
- 批准号:
10578468 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
A novel multimodal ECM analysis platform for tumor characterization combining morphological and spectrochemical tissue imaging approaches.
一种结合形态学和光谱化学组织成像方法的新型多模式 ECM 分析平台,用于肿瘤表征。
- 批准号:
10710735 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
Elucidating Molecular Drivers of Aging and Alzheimer's Disease via Multimodal Imaging Mass Spectrometry
通过多模态成像质谱阐明衰老和阿尔茨海默病的分子驱动因素
- 批准号:
10516633 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Vanderbilt University Biomolecular Multimodal Imaging Center for 3-Dimensional Mapping of the Human Kidney
范德比尔特大学生物分子多模态成像中心进行人体肾脏 3 维绘图
- 批准号:
10701827 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Biomechanics, Biomaterials and Multimodal Tissue Imaging Core (BBMTI Core)
生物力学、生物材料和多模态组织成像核心(BBMTI 核心)
- 批准号:
10232836 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别: