Molecular Plasmonic Devices for Writing at the Nanoscale
用于纳米级书写的分子等离子体装置
基本信息
- 批准号:RGPIN-2018-04161
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The chemists of the 21st century can manipulate atoms and molecules in a way that past generations could not even dream about. Today we can construct devices for the processing (reading and writing) of information at the molecular level. Like their macroscopic counterparts, molecular-level devices need energy to operate, and signals to communicate with the operator. Light is the most inexpensive, abundant and attractive tool to read and write information, allowing us to do this locally or remotely, noninvasively and with affordable experimental setups. However, diffraction prevents the focusing of light within ultra-small volumes and, as a result, the fabrication of features with molecular precision using conventional illumination techniques. Our ultimate goal is to overcome the diffraction barrier and to manipulate light in the subdiffraction regime, by engineering together organic molecules and metal nanoparticles such that their properties can be used cooperatively. These ingenious strategies offer the opportunity to confine chemical reactions within nanoscaled volumes and to fabricate features with unprecedented resolution, in a sustainable fashion. Combining classic organic chemistry with new, exciting, plasmonic technology has the potential to bypass the limitations of diffraction and permit the convenient fabrication of miniaturized objects for the communications and computer industries, in a world that uses nanotechnology to invent high performance, energy efficient, and recyclable materials.*** The main objective of this research plan is the preparation of organic substrates for plasmonic activation by metal nanoparticles for fluorescence patterning at the nanoscale. Initial work will focus on (1) the synthetic potential for plasmon-mediated chemical reactions driven by light excitation of nanoparticles, which will be exploited to convert fluorogenic organic substrates into emissive products. Toward the realization of the main objective, metal nanostructures will also be exploited in (2) plasmonic multiphoton photochemical processes. In addition to implementing new protocols in nanotechnology, this research line will lead to the development and the understanding of innovative systems with the capability of performing complex and serial functions. Combining multiple discrete components into a single multifunctional nanomaterial would be useful in a variety of applications, particularly in cascade-like reactions; the exploration of the combinatorial properties of metal nanostructures will offer exciting opportunities for high-impact discoveries in materials design.*** Through innovative and challenging research, HQP will acquire diverse technical and interpersonal skill sets that will prepare them to pursue careers in academia, industry or public service, and to make significant contributions to the future of Canadian science and innovation.**
21世纪的化学家能够以一种过去几代人做梦也想不到的方式操纵原子和分子。今天,我们可以在分子水平上构建处理(读和写)信息的设备。就像它们的宏观对应物一样,分子级设备需要能量来运行,并需要信号来与操作员通信。光是最便宜、最丰富、最吸引人的读写信息的工具,使我们能够在本地或远程、无创和负担得起的实验装置上完成这项工作。然而,衍射阻止了超小体积内的光聚焦,因此,使用传统照明技术制造具有分子精度的特征。我们的最终目标是通过将有机分子和金属纳米粒子结合在一起,使它们的特性可以协同使用,从而克服衍射势垒并在亚衍射状态下操纵光。这些巧妙的策略提供了将化学反应限制在纳米尺度内的机会,并以可持续的方式以前所未有的分辨率制造特征。在一个使用纳米技术发明高性能、节能和可回收材料的世界里,将经典的有机化学与新的、令人兴奋的等离子体技术相结合,有可能绕过衍射的限制,为通信和计算机行业方便地制造小型化物体。***本研究计划的主要目的是用金属纳米颗粒制备等离子体激活的有机底物,用于纳米级荧光图案化。最初的工作将集中在(1)由纳米粒子的光激发驱动的等离子体介导的化学反应的合成潜力,这将被用于将荧光有机底物转化为发光产物。为了实现主要目标,金属纳米结构也将在等离子体多光子光化学过程中得到开发。除了在纳米技术中实现新的协议之外,这条研究线将导致具有执行复杂和串行功能的能力的创新系统的发展和理解。将多个离散组分组合成一个单一的多功能纳米材料将在各种应用中有用,特别是在级联反应中;对金属纳米结构组合特性的探索将为材料设计中的高影响力发现提供令人兴奋的机会。***通过创新和具有挑战性的研究,HQP将获得多样化的技术和人际交往技能,为他们在学术界、工业界或公共服务部门的职业生涯做好准备,并为加拿大科学和创新的未来做出重大贡献
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Impellizzeri, Stefania其他文献
Copper nanoparticle heterogeneous catalytic 'click' cycloaddition confirmed by single-molecule spectroscopy
- DOI:
10.1038/ncomms5612 - 发表时间:
2014-08-01 - 期刊:
- 影响因子:16.6
- 作者:
Decan, Matthew R.;Impellizzeri, Stefania;Scaiano, Juan C. - 通讯作者:
Scaiano, Juan C.
Dye synthesis in the Pechmann reaction: catalytic behaviour of samarium oxide nanoparticles studied using single molecule fluorescence microscopy
- DOI:
10.1039/c5sc03214h - 发表时间:
2016-01-01 - 期刊:
- 影响因子:8.4
- 作者:
Hodgson, Gregory K.;Impellizzeri, Stefania;Scaiano, Juan C. - 通讯作者:
Scaiano, Juan C.
Improved imaging and preservation of lysosome dynamics using silver nanoparticle-enhanced fluorescence.
- DOI:
10.1091/mbc.e22-06-0200 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:3.3
- 作者:
Soha, Sumaiya A.;Santhireswaran, Araniy;Huq, Saaimatul;Casimir-Powell, Jayde;Jenkins, Nicala;Hodgson, Gregory K.;Sugiyama, Michael;Antonescu, Costin N.;Impellizzeri, Stefania;Botelho, Roberto J. - 通讯作者:
Botelho, Roberto J.
Single molecule study of samarium oxide nanoparticles as a purely heterogeneous catalyst for one-pot aldehyde chemistry
- DOI:
10.1039/c6cy00894a - 发表时间:
2016-01-01 - 期刊:
- 影响因子:5
- 作者:
Hodgson, Gregory K.;Impellizzeri, Stefania;Scaiano, Juan C. - 通讯作者:
Scaiano, Juan C.
Two-Photon Excitation of a Plasmonic Nanoswitch Monitored by Single-Molecule Fluorescence Microscopy
- DOI:
10.1002/chem.201600218 - 发表时间:
2016-05-17 - 期刊:
- 影响因子:4.3
- 作者:
Impellizzeri, Stefania;Simoncelli, Sabrina;Scaiano, Juan. C. - 通讯作者:
Scaiano, Juan. C.
Impellizzeri, Stefania的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Impellizzeri, Stefania', 18)}}的其他基金
Raman Spectroscopy for Chemistry and Engineering
化学与工程拉曼光谱
- 批准号:
RTI-2023-00093 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Research Tools and Instruments
Molecular Plasmonic Devices for Writing at the Nanoscale
用于纳米级书写的分子等离子体装置
- 批准号:
RGPIN-2018-04161 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Molecular Plasmonic Devices for Writing at the Nanoscale
用于纳米级书写的分子等离子体装置
- 批准号:
RGPIN-2018-04161 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Molecular Plasmonic Devices for Writing at the Nanoscale
用于纳米级书写的分子等离子体装置
- 批准号:
RGPIN-2018-04161 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Molecular Plasmonic Devices for Writing at the Nanoscale
用于纳米级书写的分子等离子体装置
- 批准号:
RGPIN-2018-04161 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Molecular Plasmonic Devices for Writing at the Nanoscale
用于纳米级书写的分子等离子体装置
- 批准号:
DGECR-2018-00392 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Enzymatic Nanocellulose for Antibiofilm Applications
用于抗菌膜应用的酶纳米纤维素
- 批准号:
530841-2018 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Plamonic nanoswitches for rewritable materials
用于可重写材料的等离子纳米开关
- 批准号:
452319-2013 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Banting Postdoctoral Fellowships Tri-council
Plamonic nanoswitches for rewritable materials
用于可重写材料的等离子纳米开关
- 批准号:
452319-2013 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Banting Postdoctoral Fellowships Tri-council
相似国自然基金
Plasmonic纳米孔光电同步传感用于肿瘤细胞外泌体单颗粒多参数检测的研究
- 批准号:22304162
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于协同耦合策略构筑超灵敏plasmonic PEC纳米生物传感器的研究
- 批准号:22004002
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
细菌视紫红质/Ag-M plasmonic杂化纳米生物电极用于痕量TNT电化学检测
- 批准号:21605057
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于外在超手性Plasmonic纳米结构的生物分子构象传感技术研究
- 批准号:11604227
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于plasmonic杂化纳米结构的新型化学和生物传感研究
- 批准号:21475125
- 批准年份:2014
- 资助金额:87.0 万元
- 项目类别:面上项目
单个固态plasmonic纳米孔基单分子电分析化学研究
- 批准号:21175125
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Molecular Plasmonic Devices for Writing at the Nanoscale
用于纳米级书写的分子等离子体装置
- 批准号:
RGPIN-2018-04161 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Non-Hermitian and Topological Plasmonic Devices for Light Manipulation at the Nanoscale
用于纳米级光操纵的非厄米和拓扑等离激元器件
- 批准号:
2136168 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Development of optoelectronic polarisation and plasmonic devices for bioimaging
用于生物成像的光电偏振和等离子体装置的开发
- 批准号:
2605905 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Studentship
Molecular Plasmonic Devices for Writing at the Nanoscale
用于纳米级书写的分子等离子体装置
- 批准号:
RGPIN-2018-04161 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Molecular Plasmonic Devices for Writing at the Nanoscale
用于纳米级书写的分子等离子体装置
- 批准号:
RGPIN-2018-04161 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Hybrid fabrication technology for nano-plasmonic devices
纳米等离子体器件的混合制造技术
- 批准号:
19K15423 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
chiralFEBID - Direct writing of chiral and nonlinear plasmonic devices
chiralFEBID - 直接写入手性和非线性等离子体装置
- 批准号:
428223558 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Research Grants
Molecular Plasmonic Devices for Writing at the Nanoscale
用于纳米级书写的分子等离子体装置
- 批准号:
RGPIN-2018-04161 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Molecular Plasmonic Devices for Writing at the Nanoscale
用于纳米级书写的分子等离子体装置
- 批准号:
DGECR-2018-00392 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
Overcoming plasmonic loss to realize high performance telecommunication devices
克服等离子体损耗以实现高性能电信设备
- 批准号:
1808928 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant