Enhancing Hardware Compilation for Reconfigurable Architectures using Machine Learning and Cloud Computing

使用机器学习和云计算增强可重构架构的硬件编译

基本信息

  • 批准号:
    RGPIN-2017-04232
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Reconfigurable computing architectures, such as FPGAs (Field Programmable Gate Arrays), are enjoying a widespread renaissance, particularly in the lucrative cloud computing market. FPGAs are application-specific computing chips that allow implementation of circuits that are fully tailored to a specific problem, resulting in high performance and improved energy efficiency. Software companies like Microsoft have integrated FPGAs into their data center services through the highly influential Catapult project that uses FPGAs for accelerating both computations and network processing. Hardware manufacturers like Intel have developed new computing chips for these markets that combine processors and FPGAs. ******Though FPGAs offer many advantages, they present significant challenges. Unlike software programming, FPGAs require compiling programs into low-level circuits. This requires a time-consuming, complex compilation flow built on heuristics which juggles conflicting metrics i.e. chip area, circuit speed, and power. It is not uncommon for an FPGA compilation (CAD) of a large design to take hours or even days while still not delivering the desired metrics. Industrial developers spend multiple man-months to ensure that the design meets these metrics. ******A key goal of this proposal is to apply machine learning techniques to improve the quality and speed of hardware design process. This approach is in stark contrast with existing algorithms and heuristics that have delivered negligible improvements over the past few years. Instead of attempting to design generic algorithms, we will learn from a repository of knowledge about circuit patterns and their complex interactions with the FPGA CAD flow. We will generate this knowledge by evaluating the CAD tools in parallel through variations in their input configurations across different benchmarks. Additionally, we will build high-quality predictive models through this learning-driven approach to make better mapping decisions at various stages of the compilation flow. ******In this proposal, we will also use machine learning to tackle reliability issues such as chip failures in the field due to external effects or manufacturing defects. To do this, we need to develop a new set of online (runtime) algorithms to monitor and adjust the circuits to respond to dynamic events. Instead of using pre-determined strategies, we will embed intelligence within the hardware to self-monitor and self-adapt to changing conditions. A learning-driven approach provides the hardware with the ability to respond to unforeseen events and conditions that cannot be exhaustively replicated in the testing labs.******The HQP trained through this program will acquire a blend of unique skills combining machine learning, hardware design, as well as software engineering. This is in high demand in the booming artificial intelligence and hardware design sectors of the Canadian industry.
可重构计算架构,如fpga(现场可编程门阵列),正在广泛复兴,特别是在利润丰厚的云计算市场。fpga是特定应用的计算芯片,允许实现完全针对特定问题的电路,从而实现高性能和提高能源效率。像微软这样的软件公司已经通过极具影响力的Catapult项目将fpga集成到他们的数据中心服务中,该项目使用fpga来加速计算和网络处理。像英特尔这样的硬件制造商已经为这些市场开发了结合了处理器和fpga的新型计算芯片。******虽然fpga提供了许多优点,但它们也提出了重大挑战。与软件编程不同,fpga需要将程序编译成低级电路。这需要一个耗时且复杂的编译流程,该流程建立在试探法之上,该试探法需要处理相互冲突的指标,如芯片面积、电路速度和功率。大型设计的FPGA编译(CAD)需要花费数小时甚至数天的时间,但仍然没有交付所需的指标,这并不罕见。工业开发人员花费多个人力月来确保设计满足这些指标。******本提案的一个关键目标是应用机器学习技术来提高硬件设计过程的质量和速度。这种方法与现有的算法和启发式形成鲜明对比,在过去几年中,这些算法和启发式的改进微不足道。而不是试图设计通用算法,我们将从知识库中学习电路模式及其与FPGA CAD流的复杂相互作用。我们将通过在不同基准测试中并行评估CAD工具的输入配置变化来生成这些知识。此外,我们将通过这种学习驱动的方法构建高质量的预测模型,以便在编译流的各个阶段做出更好的映射决策。******在本提案中,我们还将使用机器学习来解决可靠性问题,例如由于外部影响或制造缺陷而导致的现场芯片故障。要做到这一点,我们需要开发一套新的在线(运行时)算法来监控和调整电路以响应动态事件。我们不再使用预先确定的策略,而是将智能嵌入到硬件中,以自我监控和自我适应不断变化的条件。学习驱动的方法为硬件提供了响应不可预见的事件和条件的能力,这些事件和条件不能在测试实验室中完全复制。******通过该项目培训的HQP将获得结合机器学习、硬件设计和软件工程的独特技能。这在加拿大工业蓬勃发展的人工智能和硬件设计领域有很高的需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kapre, Nachiket其他文献

Kapre, Nachiket的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kapre, Nachiket', 18)}}的其他基金

Enhancing Hardware Compilation for Reconfigurable Architectures using Machine Learning and Cloud Computing
使用机器学习和云计算增强可重构架构的硬件编译
  • 批准号:
    RGPIN-2017-04232
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing Hardware Compilation for Reconfigurable Architectures using Machine Learning and Cloud Computing
使用机器学习和云计算增强可重构架构的硬件编译
  • 批准号:
    RGPIN-2017-04232
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing Hardware Compilation for Reconfigurable Architectures using Machine Learning and Cloud Computing
使用机器学习和云计算增强可重构架构的硬件编译
  • 批准号:
    RGPIN-2017-04232
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing Hardware Compilation for Reconfigurable Architectures using Machine Learning and Cloud Computing
使用机器学习和云计算增强可重构架构的硬件编译
  • 批准号:
    RGPIN-2017-04232
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
  • 批准号:
    2332534
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
  • 批准号:
    2400014
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
  • 批准号:
    2334628
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
CAREER: Toward Power Delivery Network-aware Hardware Security
职业:迈向电力传输网络感知硬件安全
  • 批准号:
    2338069
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了