Mathematical methods and models for complex engineering problems

复杂工程问题的数学方法和模型

基本信息

  • 批准号:
    RGPIN-2017-05754
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Our research program focuses on the development of realistic models and computer algorithms for the solution of complex engineering problems. The applied problems that we study share the following complexity attributes: high-dimensionality, nonlinearity and modeling difficulties. We describe three parts of this program. "ARTEFACT-FREE" NOISE REDUCTION METHODS FOR IMAGES: most noise reduction methods introduce artefacts that become visible if one looks at the residual image, which is the difference between the original noisy image and the denoised image. We propose to develop better methods that exploit a fine local analysis of the image and a global optimization strategy. This work should lead to both quantitatively and qualitatively superior noise reduction performance in signal processing, which in turn should have a major impact on the applications for which the image estimate accuracy is crucial, e.g. medical imaging. OPTIMAL AIRCRAFT TRAJECTORIES: The cost-index is a parameter that controls flight time, which determines both fuel cost and late-arrival penalties (caused e.g. by passengers that miss their connecting flights). A precise estimation of the optimal cost-index is very important for economical and environmental reasons. We propose to develop a fast and precise cost-index estimation method. Our approach will be to use our flight trajectory optimization system with a subset of the trajectories that links departure and arrival points. A more accurate estimate of the cost-index and a better management of the fuel reserve for aircrafts should have a direct and significant impact on both fuel consumption and carbon dioxyde emissions, which have major economic and environmental consequences. CLASSICAL AND GEOMETRICAL METHODS FOR DIFFERENTIAL EQUATIONS: Analytical solutions, even approximate, are much more useful to engineers than numerical solutions because they provide an understanding of the phenomenon as a function of its parameters. I will study a hydrogeology problem related to aquifer testing, which is a set of methods that are used to characterize groundwater. One such test is the pumping test, which consists in pumping water from a well and measuring the water level in the pumping well and observation wells as a function of time. I will study the solution of a pumping test for unconfined aquifers. No complete solution is known for unconfined aquifers, which are frequently used for drinking water supply and are the most vulnerable to contamination. Analytic solutions of their transient responses should help to achieve more reliable assessment of the resources and more effective pump-and-treat systems for contamination cases.
我们的研究计划侧重于开发现实模型和计算机算法,以解决复杂的工程问题。我们研究的应用问题具有以下复杂性属性:高维性,非线性和建模困难。我们描述了这个程序的三个部分。 用于噪声的“无伪像”噪声降低方法:大多数噪声降低方法引入伪像,如果观察残差图像,则伪像变得可见,残差图像是原始噪声图像和去噪图像之间的差异。我们建议开发更好的方法,利用精细的局部图像分析和全局优化策略。这项工作应导致定量和定性的上级降噪性能的信号处理,这反过来又应该有一个重大影响的应用程序的图像估计精度是至关重要的,例如医学成像。 最佳飞机轨迹:成本指数是一个控制飞行时间的参数,它决定了燃料成本和迟到惩罚(例如由错过转机航班的乘客造成的)。从经济和环境的角度来看,精确估计最佳成本指数是非常重要的。我们建议开发一个快速和精确的成本指数估计方法。我们的方法将是使用我们的飞行轨迹优化系统与链接出发点和到达点的轨迹的子集。更准确地估计成本指数和更好地管理飞机的燃料储备,应该对燃料消耗和二氧化碳排放产生直接和重大的影响,这会产生重大的经济和环境后果。 微分方程的经典和几何方法:分析解,甚至近似解,对工程师来说比数值解更有用,因为它们提供了对现象的理解,作为其参数的函数。我将研究与含水层测试有关的水文地质问题,含水层测试是一套用于描述地下水特征的方法。一种这样的测试是抽水测试,其包括从井中抽水并测量作为时间函数的抽水井和观测威尔斯中的水位。我将研究潜水含水层抽水试验的解决办法。对于无压含水层,目前还没有一个完整的解决办法,因为无压含水层经常用于饮用水供应,而且最容易受到污染。其瞬态响应的解析解应有助于实现更可靠的资源评估和更有效的泵和处理系统的污染情况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saucier, Antoine其他文献

Saucier, Antoine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saucier, Antoine', 18)}}的其他基金

Mathematical methods and models for complex engineering problems
复杂工程问题的数学方法和模型
  • 批准号:
    RGPIN-2017-05754
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical methods and models for complex engineering problems
复杂工程问题的数学方法和模型
  • 批准号:
    RGPIN-2017-05754
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical methods and models for complex engineering problems
复杂工程问题的数学方法和模型
  • 批准号:
    RGPIN-2017-05754
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical methods and models for complex engineering problems
复杂工程问题的数学方法和模型
  • 批准号:
    RGPIN-2017-05754
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation of the Aeroplan distinction status program desirability
Aeroplan 杰出地位计划的可取性评估
  • 批准号:
    529296-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Engage Grants Program
Mathematical methods and models for complex engineering problems
复杂工程问题的数学方法和模型
  • 批准号:
    RGPIN-2017-05754
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Front-end Signal Processing for Improved Automatic Speech Recognition
用于改进自动语音识别的前端信号处理
  • 批准号:
    522072-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Engage Grants Program
Multiscale Methods for Signal Processing
信号处理的多尺度方法
  • 批准号:
    250241-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale Methods for Signal Processing
信号处理的多尺度方法
  • 批准号:
    250241-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale Methods for Signal Processing
信号处理的多尺度方法
  • 批准号:
    250241-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
  • 批准号:
    2347546
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Core 1: Mathematical Core
核心 1:数学核心
  • 批准号:
    10730408
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Development of mathematics teaching materials, teaching methods, and curricula to foster the ability to create and analyze mathematical models
开发数学教材、教学方法和课程,培养创建和分析数学模型的能力
  • 批准号:
    23H01028
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Oncology Systems Analysis Imaging Center (MOSAIC)
数学肿瘤学系统分析成像中心 (MOSAIC)
  • 批准号:
    10729420
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Mathematical Optimization of Surveillance Ages to Intercept colitis-associated Colorectal cancer (MOSAIC)
监测年龄的数学优化以拦截结肠炎​​相关结直肠癌 (MOSAIC)
  • 批准号:
    10581069
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Mathematical Modeling and Scientific Computing for Infectious Disease Research
传染病研究的数学建模和科学计算
  • 批准号:
    10793008
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
  • 批准号:
    10662098
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Mathematical Modeling of the Impacts of Prebiotic Dietary Intervention on Immunomodulation During Estrogen Deficiency
雌激素缺乏期间益生元饮食干预对免疫调节影响的数学模型
  • 批准号:
    10593502
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
Mathematical modeling of Mycobacterium tuberculosis dissemination
结核分枝杆菌传播的数学模型
  • 批准号:
    10364119
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Global analysis of mathematical models with conservation law by semi-analytic methods using the elliptic functions
使用椭圆函数的半解析方法对具有守恒定律的数学模型进行全局分析
  • 批准号:
    22K13962
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了