Compositional Analysis via Magnetic Resonance Relaxation Correlation with a Desktop Permanent Magnet

通过磁共振弛豫关联与桌面永磁体进行成分分析

基本信息

  • 批准号:
    RTI-2022-00111
  • 负责人:
  • 金额:
    $ 7.3万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Research Tools and Instruments
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This RTI grant supports the purchase of a desktop magnetic resonance (MR) instrument for usage with a new MR relaxation correlation measurement, developed by the applicants, that permits facile compositional analysis of solid and semi-solid materials. The instrument is based on a low-field permanent magnet while the measurement relies on the determination of 1H MR signal lifetimes. This system will be a platform for continued development of the new methodology, T1-T2* and T1rho-T2* relaxation correlation, and will permit the earliest and most advantageous application to five research areas of contemporary interest.    Traditional time domain MR signal lifetime measurements excel for liquid analysis but fail when confronted with solids and solid-like mixtures. Time domain instruments require minimal or no sample preparation and are `whole sample' measurements due to facile RF electromagnetic penetration in non-metallic samples. Conventional methods for solid mixture analysis are either surface limited, for example near-infrared, or they are substantially limited to crystalline materials, for example powder x-ray diffraction (PXRD). Our new relaxation correlation methodologies dramatically expand the range of samples and processes which will be probed by this economical low-field time domain instrument.    MR signal lifetimes are very sensitive to molecular dynamics and environment. The new method permits observation and discrimination of a wide range of solid-like species and will discriminate between crystalline and amorphous species (unlike PXRD) in addition to measuring mobile small molecules, for example water or oil, in mixtures of solids. This new instrument, coupled with our methodology, will be employed to analyze five initial classes of solid mixtures/materials. (1) Solid state chemical reactions where solid species are co-mixed as reagents leading to solid products. (2) Composition of solid mixtures of industrial importance. Verification of solid mixing, quality control of commodity chemicals, including phase of natural biopolymers and determination of small molecule content (such as hydrates) are all practical analytical problems in industry. (3) Shale composition, specifically the water and oil content. Direct observation of kerogen signal will permit grading shale maturity. Shale is the source rock for traditional petroleum reservoirs and exploitation of shale resources has revolutionized the petroleum industry. (4) Water, oil and plant fibre mass content in wood materials, and high-value plants like cannabis. Liquids in the plant fibre matrix are straight forward to identify via 1H MR signal lifetime. Observation of the 1H solid plant fibre signal, with appropriate conversion to mass via an average molecular weight, will permit direct determination of component mass percentage without weighing. (5) Battery Studies. MR signal lifetime analyses will permit characterization of electrolyte decomposition during battery operation.
这笔RTI赠款支持购买台式磁共振(MR)仪器,以便与申请者开发的新的MR弛豫相关测量一起使用,该测量允许对固体和半固体材料进行便捷的成分分析。该仪器基于低场永磁体,而测量依赖于1H磁共振信号寿命的确定。该系统将成为继续开发新方法T1-T2*和T1-T2*松弛相关性的平台,并将允许最早和最有利的应用于五个当代感兴趣的研究领域。然而,传统的时域磁共振信号寿命测量在液体分析方面表现出色,但在面对固体和类固体混合物时就失败了。由于射频电磁穿透在非金属样品中的方便性,时间域仪器需要最少的样品制备或不需要样品制备,并且是“完整样品”测量。传统的固体混合物分析方法要么是表面受限的,例如近红外的,要么是实质上受限于结晶材料的,例如粉末X射线衍射法(PXRD)。我们新的松弛相关方法极大地扩展了样品和过程的范围,这些样品和过程将由这种经济的低场时域仪器来探测。因此,MR信号的寿命对分子动力学和环境非常敏感。新方法允许观察和区分广泛的类固体物种,除了测量固体混合物中的可移动小分子,例如水或油外,还将区分结晶和非晶态物种(不同于PXRD)。这个新的仪器,加上我们的方法,将被用来分析五种初始类别的固体混合物/材料。(1)固态化学反应,其中固体物种作为试剂共混,产生固体产物。(2)具有工业重要性的固体混合物的组成。固体混合的验证、商品化学品的质量控制,包括天然生物聚合物的相态,以及小分子含量(如水合物)的测定,都是工业中的实际分析问题。(3)页岩成分,特别是水和油的含量。直接观察干酪根信号可以对页岩成熟度进行分级。页岩是传统石油储集层的源岩,页岩资源的开发使石油工业发生了革命性的变化。(4)木材材料和大麻等高价值植物中的水分、油和植物纤维质量含量。植物纤维基质中的液体直接通过1H磁共振信号寿命进行识别。观察1H固体植物纤维信号,通过平均分子量适当地转换为质量,将允许直接测定组成质量百分比,而无需称重。(5)电池研究。磁共振信号寿命分析将允许表征电池运行过程中电解液的分解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Balcom, Bruce其他文献

Magnetic resonance measurements of French fries to determine spatially resolved oil and water content
  • DOI:
    10.1016/j.foodres.2008.04.011
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    MacMillan, Bryce;Hickey, Heather;Balcom, Bruce
  • 通讯作者:
    Balcom, Bruce

Balcom, Bruce的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Balcom, Bruce', 18)}}的其他基金

Spatially Resolved Analytical Chemistry: Magnetic Resonance and Magnetic Resonance Imaging of Materials and Processes.
空间分辨分析化学:材料和过程的磁共振和磁共振成像。
  • 批准号:
    RGPIN-2022-04003
  • 财政年份:
    2022
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Grants Program - Individual
Materials Science Magnetic Resonance Imaging
材料科学磁共振成像
  • 批准号:
    CRC-2015-00040
  • 财政年份:
    2022
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Canada Research Chairs
Materials Science Magnetic Resonance Imaging
材料科学磁共振成像
  • 批准号:
    CRC-2015-00040
  • 财政年份:
    2021
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Canada Research Chairs
Spatially Resolved Analytical Chemistry - Magnetic Resonance Imaging of Materials
空间分辨分析化学 - 材料的磁共振成像
  • 批准号:
    RGPIN-2015-06122
  • 财政年份:
    2021
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Grants Program - Individual
Materials Science Magnetic Resonance Imaging
材料科学磁共振成像
  • 批准号:
    CRC-2015-00040
  • 财政年份:
    2020
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Canada Research Chairs
Spatially Resolved Analytical Chemistry - Magnetic Resonance Imaging of Materials
空间分辨分析化学 - 材料的磁共振成像
  • 批准号:
    RGPIN-2015-06122
  • 财政年份:
    2020
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Grants Program - Individual
Materials Science Magnetic Resonance Imaging
材料科学磁共振成像
  • 批准号:
    CRC-2015-00040
  • 财政年份:
    2019
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Canada Research Chairs
Spatially Resolved Analytical Chemistry - Magnetic Resonance Imaging of Materials
空间分辨分析化学 - 材料的磁共振成像
  • 批准号:
    RGPIN-2015-06122
  • 财政年份:
    2019
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Grants Program - Individual
Materials Science Magnetic Resonance Imaging
材料科学磁共振成像
  • 批准号:
    CRC-2015-00040
  • 财政年份:
    2018
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Canada Research Chairs
Spatially Resolved Analytical Chemistry - Magnetic Resonance Imaging of Materials
空间分辨分析化学 - 材料的磁共振成像
  • 批准号:
    RGPIN-2015-06122
  • 财政年份:
    2018
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
  • 批准号:
    24K21025
  • 财政年份:
    2024
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
  • 批准号:
    23K03219
  • 财政年份:
    2023
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
  • 批准号:
    10745593
  • 财政年份:
    2023
  • 资助金额:
    $ 7.3万
  • 项目类别:
Understanding the Internal Structure and Near-Storm Environments of Supercells via Innovative Analysis of Targeted Observation by Radars and UAS of Supercells (TORUS) Observations
通过对超级单体(TORUS)观测的雷达和无人机定向观测的创新分析,了解超级单体的内部结构和近风暴环境
  • 批准号:
    2312090
  • 财政年份:
    2023
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Towards Explainable AI Algorithms via Fitness Landscape Analysis in Evolutionary Computation
通过进化计算中的适应度景观分析实现可解释的人工智能算法
  • 批准号:
    2890959
  • 财政年份:
    2023
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Studentship
SBIR Phase I: Detection of Chronic Diseases via Multiplex Analysis of Circulating Metabolites
SBIR 第一阶段:通过循环代谢物的多重分析检测慢性疾病
  • 批准号:
    2212865
  • 财政年份:
    2023
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: IIS: Event Detection and Knowledge Extraction via Learning and Causality Analysis for Resilience Emergency Response
协作研究:CISE-MSI:DP:IIS:通过学习和因果关系分析进行事件检测和知识提取,以实现弹性应急响应
  • 批准号:
    2219615
  • 财政年份:
    2023
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Exploring various subgrid scale turbulence models via convergence analysis, data assimilation and deep learning
LEAPS-MPS:通过收敛分析、数据同化和深度学习探索各种亚网格尺度湍流模型
  • 批准号:
    2316894
  • 财政年份:
    2023
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Compositional analysis of the ageing precipitates in HSA6 alloys via Atom Probe Tomography
通过原子探针断层扫描对 HSA6 合金中时效析出物进行成分分析
  • 批准号:
    2890335
  • 财政年份:
    2023
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Studentship
Postdoctoral Fellowship: MPS-Ascend: Elucidation of Peptide Scrambling in Collision Induced Dissociation: Energetic and Mechanistic Analysis via Guided Ion Beam Mass Spectrometry
博士后奖学金:MPS-Ascend:阐明碰撞诱导解离中的肽加扰:通过引导离子束质谱进行能量和机理分析
  • 批准号:
    2316669
  • 财政年份:
    2023
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了