Mathematical Sciences: Non-Standard Singular Integrals
数学科学:非标准奇异积分
基本信息
- 批准号:9203930
- 负责人:
- 金额:$ 3.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-05-15 至 1995-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The object of this mathematical research is the analysis of certain singular integral transforms and their mapping properties relative to various spaces of functions. In particular, work will be done to establishing the boundedness of such mappings in those cases where the kernel of the singular integral lacks the smoothness necessary to be treated by classical techniques. These include multilinear singular integrals called d-commutators and operators which fail to carry the Hardy space into integrable functions or bounded functions into BMO. Some progress has already been made. For example, a result similar to the now standard David-Journe T1-condition has been developed which permits consideration of very rough kernels. The work also lends itself to the consideration of commutators of singular integrals with mixed homogeneity, in particular parabolic homogeneity. Singular integral transformations form the basis for much of the important work under active consideration in modern harmonic analysis. Among the motivating forces behind these studies is the goal for finding comprehensive techniques for solving broad classes of partial differential equations. These equations arise as models of many important, nonlinear physical phenomena.
这项数学研究的目的是分析某些奇异积分变换及其相对于不同函数空间的映射性质。特别是,在奇异积分的核缺乏经典技巧所必需的光滑性的情况下,将致力于建立这种映射的有界性。其中包括称为d-交换子的多线性奇异积分,以及不能将Hardy空间化为可积函数或有界函数化为BMO的算子。已经取得了一些进展。例如,一个类似于现在标准的David-Journe T1条件的结果已经被开发出来,它允许考虑非常粗糙的核。这项工作也适用于考虑具有混合齐次的奇异积分的交换子,特别是抛物齐次。奇异积分变换构成了现代调和分析中许多正在积极考虑的重要工作的基础。在这些研究背后的驱动力中,有一个目标是寻找解决大类偏微分方程组的综合技术。这些方程是作为许多重要的、非线性物理现象的模型出现的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Hofmann其他文献
Steven Hofmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Hofmann', 18)}}的其他基金
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
$ 3.34万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 3.34万 - 项目类别:
Standard Grant
Harmonic Analysis, Boundary Value Problems, and Parabolic Rectifiability
谐波分析、边值问题和抛物线可整流性
- 批准号:
2000048 - 财政年份:2020
- 资助金额:
$ 3.34万 - 项目类别:
Standard Grant
Analysis in Missouri: a Midwestern Symposium
密苏里州的分析:中西部研讨会
- 批准号:
1901871 - 财政年份:2019
- 资助金额:
$ 3.34万 - 项目类别:
Standard Grant
Rectifiability and Elliptic Partial Differential Equations
可修正性和椭圆偏微分方程
- 批准号:
1664047 - 财政年份:2017
- 资助金额:
$ 3.34万 - 项目类别:
Continuing Grant
Uniform Rectifiability and Elliptic Equations
一致可整流性和椭圆方程
- 批准号:
1361701 - 财政年份:2014
- 资助金额:
$ 3.34万 - 项目类别:
Continuing Grant
Uniform rectifiability, Singular Integrals and Harmonic Measure
均匀可整流性、奇异积分和谐波测量
- 批准号:
1101244 - 财政年份:2011
- 资助金额:
$ 3.34万 - 项目类别:
Continuing Grant
Tb Theorems, Singular Integrals, Poisson Kernels, and Regularity of Boundaries
Tb 定理、奇异积分、泊松核和边界正则性
- 批准号:
0801079 - 财政年份:2008
- 资助金额:
$ 3.34万 - 项目类别:
Continuing Grant
Conference on Harmonic Analysis and Partial Differential Equations
调和分析与偏微分方程会议
- 批准号:
0222187 - 财政年份:2002
- 资助金额:
$ 3.34万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences -Non-Positive Curvature in Group Theory; Albany, NY; August 15-20, 2004
NSF/CBMS 数学科学区域会议 - 群论中的非正曲率;
- 批准号:
0333532 - 财政年份:2004
- 资助金额:
$ 3.34万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences--The existence and non-existence of periodic orbits in smooth dynamical systems--July 10-14, 2000
CBMS 数学科学区域会议——光滑动力系统中周期轨道的存在与不存在——2000 年 7 月 10-14 日
- 批准号:
9978848 - 财政年份:2000
- 资助金额:
$ 3.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
- 批准号:
9896186 - 财政年份:1998
- 资助金额:
$ 3.34万 - 项目类别:
Continuing Grant
Mathematical Sciences: Instabilities and Bifurcations in Non-Newtonian Shear Flows
数学科学:非牛顿剪切流中的不稳定性和分岔
- 批准号:
9704622 - 财政年份:1997
- 资助金额:
$ 3.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Structure of Vector-Valued Function Spaces and Non-Commutative Function Spaces
数学科学:向量值函数空间和非交换函数空间的结构
- 批准号:
9703789 - 财政年份:1997
- 资助金额:
$ 3.34万 - 项目类别:
Continuing grant
Mathematical Sciences: Large-eddy Simulation & Mathematical Analysis of Non-equilibrium & Non-linear Processes in Mantle Convection
数学科学:大涡模拟
- 批准号:
9622889 - 财政年份:1996
- 资助金额:
$ 3.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Non-Commutative Differential Geometry of Deformations of Commutative Rings: Operations Index Theorems and Characteristic Classes
数学科学:交换环变形的非交换微分几何:运算指数定理和特征类
- 批准号:
9623051 - 财政年份:1996
- 资助金额:
$ 3.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
- 批准号:
9531957 - 财政年份:1996
- 资助金额:
$ 3.34万 - 项目类别:
Continuing Grant
Mathematical Sciences: Non-Reflecting Boundary Conditions Based on Far Field Expansions
数学科学:基于远场展开的非反射边界条件
- 批准号:
9530937 - 财政年份:1996
- 资助金额:
$ 3.34万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Control Problems for Linear and Non-Linear Partial Differential Equations and Riccati Equations
数学科学:线性和非线性偏微分方程和 Riccati 方程的边界控制问题
- 批准号:
9504822 - 财政年份:1995
- 资助金额:
$ 3.34万 - 项目类别:
Continuing Grant