Mathematical Sciences: Instabilities in Premixed and Diffused Flames
数学科学:预混火焰和扩散火焰的不稳定性
基本信息
- 批准号:9403890
- 负责人:
- 金额:$ 15.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-07-01 至 1998-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9403890 Matalon This program is concerned with the dynamic behavior of premixed and diffusion (non-premixed) flames. It is proposed to derive simplified mathematical models that permit the description of flames of general shapes in open and confined environments, and to study dynamical aspects of flame behavior within this framework by means of asymptotic and perturbation methods supplemented by numerical computations. Specific problems that will be addressed include identifying intrinsic instabilities associated with diffusion flames, exploring the dynamics and stability of premixed flames complicated by non uniform flow fields and by effects due to confinement, and examining the dynamics of flame spread over liquid fuels. The significance of the proposed research is enhancement of the current understanding of the complex phenomena involved in combustion processes. The proposed work is not only of fundamental importance to combustion science but has also direct relevance to practical applications. This proposal consists of a basic research program whose aim is gaining fundamental understanding on how the complex chemical and physical processes interact in real combustion systems. The problems under consideration include the burning of premixed combustible gases in open and confined environments which is of interest in various engineering systems, flame spread over flammable liquids which is of great importance in fire hazards with accidental spillage, and the burning of pure (nonpremixed) fuels which is most relevant to fire safety and fire prevention. To gain insight into these problems, and in particular into the mechanisms responsible for the sustenance of the burning and those responsible for its extinguishement, it is proposed to develop simplified mathematical models and analyze them in depth. This approach, which identifies cause and effect, is likely to explain and guide experimental observations. A deep understanding often lead to suggest ions of new directions for experiments and design.
小行星9403890 本程序涉及预混和扩散(非预混)火焰的动态行为。建议推导出简化的数学模型,允许在开放和封闭的环境中的一般形状的火焰的描述,并研究在此框架内的火焰行为的动力学方面的渐近和微扰方法辅以数值计算。将解决的具体问题包括识别与扩散火焰相关的固有不稳定性,探索复杂的非均匀流场和由于限制的影响,并检查火焰蔓延的液体燃料的动力学的预混火焰的动态和稳定性。 建议的研究的意义是提高目前的理解复杂的现象,在燃烧过程中所涉及的。这项工作不仅对燃烧科学具有重要意义,而且对实际应用也有直接的意义。 该提案包括一个基础研究计划,其目的是获得对复杂的化学和物理过程如何在真实的燃烧系统中相互作用的基本理解。所考虑的问题包括在各种工程系统中感兴趣的开放和封闭环境中的预混可燃气体的燃烧,在意外溢出的火灾危险中非常重要的易燃液体上的火焰传播,以及与消防安全和防火最相关的纯(非预混)燃料的燃烧。为了深入了解这些问题,特别是负责维持燃烧和负责燃烧的机制,建议开发简化的数学模型并深入分析它们。这种识别因果关系的方法很可能解释和指导实验观察。深刻的理解往往会为实验和设计提供新的方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moshe Matalon其他文献
Critical conditions for flame acceleration in long adiabatic channels closed at their ignition end
- DOI:
10.1016/j.proci.2016.06.024 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Vadim N. Kurdyumov;Moshe Matalon - 通讯作者:
Moshe Matalon
Intrinsic characteristics of asymmetric edge flames: Effects of stoichiometry on edge speed and temperature
- DOI:
10.1016/j.proci.2024.105670 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Zhanbin Lu;Moshe Matalon - 通讯作者:
Moshe Matalon
Morphology of wrinkles along the surface of turbulent Bunsen fames - their amplication and advection due to the Darrieus-Landau instability
湍流本生灯表面的皱纹形态——由于达里厄斯-朗道不稳定性导致的皱纹的放大和平流
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.4
- 作者:
Meng Zhang;Advitya Patyal;Zuohua Huang;Moshe Matalon - 通讯作者:
Moshe Matalon
Diffusion flames in condensed-phase energetic materials: Application to Titanium–Boron combustion
- DOI:
10.1016/j.combustflame.2015.08.023 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:
- 作者:
Sushilkumar P. Koundinyan;John B. Bdzil;Moshe Matalon;D. Scott Stewart - 通讯作者:
D. Scott Stewart
Edge flames in mixing layers: Effects of heat recirculation through thermally active splitter plates
混合层中的边缘火焰:通过热活性分流板进行热再循环的影响
- DOI:
10.1016/j.combustflame.2020.04.010 - 发表时间:
2020-07 - 期刊:
- 影响因子:4.4
- 作者:
Zhanbin Lu;Moshe Matalon - 通讯作者:
Moshe Matalon
Moshe Matalon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moshe Matalon', 18)}}的其他基金
Outwardly Expanding Premixed Flames in Turbulent Media
湍流介质中向外扩展的预混火焰
- 批准号:
1911530 - 财政年份:2020
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
Propagation of corrugated flames in the flamelet regime
小火焰状态下波纹火焰的传播
- 批准号:
1067259 - 财政年份:2011
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
Mathematical Modeling of Combustion Phenomena at the Microscale
微尺度燃烧现象的数学模型
- 批准号:
0708588 - 财政年份:2007
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
The Dynamics of Flame Fronts - Asymptotics and Computations
火焰锋面动力学 - 渐近学和计算
- 批准号:
0733145 - 财政年份:2007
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
Numerical Modeling of Flame Propagation in the Flamelet Regime
小火焰状态下火焰传播的数值模拟
- 批准号:
0733146 - 财政年份:2007
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
Numerical Modeling of Flame Propagation in the Flamelet Regime
小火焰状态下火焰传播的数值模拟
- 批准号:
0552140 - 财政年份:2006
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
The Dynamics of Flame Fronts - Asymptotics and Computations
火焰锋面动力学 - 渐近学和计算
- 批准号:
0405129 - 财政年份:2004
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
Nonlinear Dynamics of Premixed and Diffusion Flames
预混火焰和扩散火焰的非线性动力学
- 批准号:
0072588 - 财政年份:2000
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
Premixed Flame Propagation in the Flamelet Regime
小火焰状态下的预混合火焰传播
- 批准号:
0074320 - 财政年份:2000
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
Evolution Equations in Modeling Chemically Reacting Flows
化学反应流建模中的演化方程
- 批准号:
9703716 - 财政年份:1997
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Instabilities and Bifurcations in Non-Newtonian Shear Flows
数学科学:非牛顿剪切流中的不稳定性和分岔
- 批准号:
9704622 - 财政年份:1997
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
Mathematical Sciences: "Mathematical Topics Related to Fluid Instabilities
数学科学:“与流体不稳定性相关的数学主题
- 批准号:
9622563 - 财政年份:1996
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Pattern Formation Relevant to Turing and Morphological Instabilities: Comparison of Theory with Experiment
数学科学:与图灵和形态不稳定性相关的模式形成:理论与实验的比较
- 批准号:
9531797 - 财政年份:1996
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Equilibria Instabilities and Waves in Fluids and Plasmas
数学科学:流体和等离子体中的平衡不稳定性和波动
- 批准号:
9623033 - 财政年份:1996
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonconvex Variational Problems and Material Instabilities CMU Proposal 06823
数学科学:非凸变分问题和材料不稳定性 CMU 提案 06823
- 批准号:
9500531 - 财政年份:1995
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Instabilities and Pattern Formation in Flames
数学科学:火焰中的不稳定性和模式形成
- 批准号:
9104029 - 财政年份:1991
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Material Instabilities in Solids
数学科学:固体中的材料不稳定性
- 批准号:
8810653 - 财政年份:1988
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Asymptotic Analysis of Singular Bifurcation, Limit Point Instabilities and Free Boundary Problems and Applications
数学科学:奇异分岔、极限点不稳定性和自由边界问题的渐近分析及应用
- 批准号:
8701302 - 财政年份:1987
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Material Instabilities in Solids
数学科学:固体中的材料不稳定性
- 批准号:
8600281 - 财政年份:1986
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Asymptotic and Perturbation Methods for Singular Bifurcation and Limit Point Instabilities
数学科学:奇异分岔和极限点不稳定性的渐近和微扰方法
- 批准号:
8507922 - 财政年份:1985
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant