Mathematical Sciences: Algebraic K-Theory of Group Rings and Fields
数学科学:群环和域的代数 K 理论
基本信息
- 批准号:9504789
- 负责人:
- 金额:$ 11.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-15 至 1998-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9504789 Carlsson This project will pursue two directions within algebraic K-theory. The first attempts to resolve problems within high dimensional geometric topology by studying the algebraic K-theory of group rings, generally the group rings of fundamental groups of the manifolds involved. K-theory turns out to be useful in studying the homeomorphism classification within a given homotopy type. The second will use an analogue of the techniques used in these geometric problems to study the algebraic K-theory of fields, specifically the descent problem for fields with topologically cyclic absolute Galois group. Topology concerns itself with properties of spaces (curves, surfaces, and higher dimensional analogues) which do not change under deformations. Informally, one thinks of stretching or shrinking part or all of the space. For instance, if one thinks of the capital letter "A" as a space, one could print it with different fonts, and although the results would change (the size, as well as the slant of the character, or the height of the horizontal line within the character), it would not change topologically, since the one figure could be stretched or bent into the other. Humans are able to recognize visually the fact that these figures are topologically the same, since we are easily able to read text written in either font. This notion of equivalence is referred to as "homeomorphism." There is an even stronger notion of equivalence referred to as "homotopy equivalence," which, for instance, allows arcs not only to be stretched but to be compressed into points. Thus the capital letter "H" is homotopy equivalent but not homeomorphic to the capital letter "X," since one can obtain "X" from "H" by compressing the horizontal line to a point. However, capital "O" is not homotopy equivalent to "I," since the "O" contains a loop while the "I" does not. Homotopy equivalence is typically an easier relation to determine than homeomorphism. This proje ct concerns itself with the problem of classifying up to homeomorphism spaces which are already homotopy equivalent, for a certain family of "homotopy types." Surprisingly, although this problem seems entirely geometric, the techniques required use heavily abstract algebra. This interplay between algebra and geometry is one of the most exciting areas in mathematics today. ***
9504789 Carlsson这个项目将在代数k理论中追求两个方向。第一次尝试通过研究群环的代数k理论来解决高维几何拓扑中的问题,一般是流形所涉及的基本群的群环。k理论对于研究给定同伦类型内的同胚分类是有用的。第二部分将使用这些几何问题中使用的技术的模拟来研究场的代数k理论,特别是具有拓扑循环绝对伽罗瓦群的场的下降问题。拓扑学关注的是空间(曲线、曲面和高维类似物)在变形下不会改变的特性。非正式地说,人们认为拉伸或缩小部分或全部空间。例如,如果把大写字母“A”看作一个空格,可以用不同的字体打印它,尽管结果会改变(大小,以及字符的倾斜度,或字符内水平线的高度),但它不会在拓扑上改变,因为一个图形可以拉伸或弯曲成另一个图形。人类能够从视觉上识别出这些图形在拓扑结构上是相同的事实,因为我们很容易阅读用两种字体写的文本。这种等价的概念被称为“同胚”。还有一个更强的等价概念,称为“同伦等价”,例如,它允许弧不仅被拉伸,而且被压缩成点。因此,大写字母“H”与大写字母“X”是同伦等价的,但不是同胚的,因为可以通过将水平线压缩到一点而从“H”得到“X”。然而,大写字母“O”并不等价于“I”,因为“O”包含一个循环,而“I”不包含。同伦等价关系通常比同胚关系更容易确定。本课题研究了一类“同伦类型”的同胚空间在同伦等价的情况下的分类问题。令人惊讶的是,尽管这个问题看起来完全是几何问题,但所需的技术却使用了大量抽象代数。代数和几何之间的相互作用是当今数学中最令人兴奋的领域之一。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gunnar Carlsson其他文献
The Role of Geometry in Convolutional Neural Networks for Medical Imaging
几何在医学成像卷积神经网络中的作用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yashbir Singh;Colleen Farrelly;Quincy A. Hathaway;Ashok Choudhary;Gunnar Carlsson;Bradley Erickson;T. Leiner - 通讯作者:
T. Leiner
Current Topological and Machine Learning Applications for Bias Detection in Text
当前用于文本偏差检测的拓扑和机器学习应用
- DOI:
10.1109/icspis60075.2023.10343824 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Colleen Farrelly;Yashbir Singh;Quincy A. Hathaway;Gunnar Carlsson;Ashok Choudhary;Rahul Paul;Gianfranco Doretto;Yassine Himeur;Shadi Atalla;W. Mansoor - 通讯作者:
W. Mansoor
Topological methods for data modelling
用于数据建模的拓扑方法
- DOI:
10.1038/s42254-020-00249-3 - 发表时间:
2020-11-10 - 期刊:
- 影响因子:39.500
- 作者:
Gunnar Carlsson - 通讯作者:
Gunnar Carlsson
The shape of biomedical data
- DOI:
10.1016/j.coisb.2016.12.012 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:
- 作者:
Gunnar Carlsson - 通讯作者:
Gunnar Carlsson
The integral K-theoretic Novikov conjecture for groups with finite asymptotic dimension THANKSREF="*" ID="*"The authors gratefully acknowledge support from the National Science Foundation.
- DOI:
10.1007/s00222-004-0401-4 - 发表时间:
2004-12-22 - 期刊:
- 影响因子:3.600
- 作者:
Gunnar Carlsson;Boris Goldfarb - 通讯作者:
Boris Goldfarb
Gunnar Carlsson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gunnar Carlsson', 18)}}的其他基金
III: Medium: Collaborative Research: Geometric Network Analysis Tools: Algorithmic Methods for Identifying Structure in Large Informatics Graphs
III:媒介:协作研究:几何网络分析工具:识别大型信息学图中结构的算法方法
- 批准号:
0964242 - 财政年份:2010
- 资助金额:
$ 11.28万 - 项目类别:
Continuing Grant
III: Workshop support for meeting on algorithms for modern massive data sets, MMDS 2010
III:为现代海量数据集算法会议提供研讨会支持,MMDS 2010
- 批准号:
0949412 - 财政年份:2009
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
Investigations in the application of homotopy theory
同伦理论的应用研究
- 批准号:
0905823 - 财政年份:2009
- 资助金额:
$ 11.28万 - 项目类别:
Continuing Grant
Special Meeting: Fields Program in Geometric Applications of Homotopy Theory - International US Participation
特别会议:同伦理论几何应用领域计划 - 国际美国参与
- 批准号:
0603411 - 财政年份:2006
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
FRG: Algebraic topology as a tool in feature location, feature classification, shape recognition, and shape description
FRG:代数拓扑作为特征定位、特征分类、形状识别和形状描述的工具
- 批准号:
0354543 - 财政年份:2004
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
Homotopy Theoretic Investigations in Higher K-theory, High-dimensional Data Analysis, and High Dimensional Manifold Theory
高阶 K 理论、高维数据分析和高维流形理论中的同伦理论研究
- 批准号:
0406992 - 财政年份:2004
- 资助金额:
$ 11.28万 - 项目类别:
Continuing Grant
Algebraic Topological Methods in Computer Science
计算机科学中的代数拓扑方法
- 批准号:
0106804 - 财政年份:2001
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
Representation of Galois groups and descent in algebraic K-theory
代数 K 理论中伽罗瓦群的表示和下降
- 批准号:
0104162 - 财政年份:2001
- 资助金额:
$ 11.28万 - 项目类别:
Continuing Grant
FRG: Topological methods in data analysis
FRG:数据分析中的拓扑方法
- 批准号:
0101364 - 财政年份:2001
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
Equivariant stable homotopy theory and K-theory
等变稳定同伦理论和K理论
- 批准号:
0075689 - 财政年份:2000
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences -- Topological and algebraic regularity properties of nuclear C*-algebras
NSF/CBMS 数学科学区域会议 -- 核 C* 代数的拓扑和代数正则性性质
- 批准号:
1138022 - 财政年份:2011
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences: Algebraic Topology in Applied Mathematics; Summer 2009, Cleveland, OH
CBMS 数学科学区域会议:应用数学中的代数拓扑;
- 批准号:
0834140 - 财政年份:2009
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Algebraic and Topological Combinatorics of Ordered Sets - 18 - 22 July, 2005
CBMS 数学科学区域会议 - 有序集的代数和拓扑组合 - 2005 年 7 月 18 - 22 日
- 批准号:
0434402 - 财政年份:2005
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in Mathematical Sciences--'Algebraic Combinatorics'- June 4, 2001 - June 8, 2001
NSF/CBMS 数学科学地区会议 - “代数组合”- 2001 年 6 月 4 日 - 2001 年 6 月 8 日
- 批准号:
0085656 - 财政年份:2001
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
Algebraic and Analytic Methods in the Mathematical Sciences
数学科学中的代数和分析方法
- 批准号:
9912192 - 财政年份:2000
- 资助金额:
$ 11.28万 - 项目类别:
Continuing Grant
Mathematical Sciences: L-Independence in Arithmetic Algebraic Geometry
数学科学:算术代数几何中的 L 独立性
- 批准号:
9796240 - 财政年份:1997
- 资助金额:
$ 11.28万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Transformation Groups
数学科学:代数变换群
- 批准号:
9701200 - 财政年份:1997
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
Mathematical Sciences/GIG: Southwest Center for Arithmetical Algebraic Geometry
数学科学/GIG:西南算术代数几何中心
- 批准号:
9709662 - 财政年份:1997
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic Cycles, Group Schemes, K-Theory and Connections between Stable Homotopy and Group Cohomology
数学科学:代数环、群方案、K 理论以及稳定同伦与群上同调之间的联系
- 批准号:
9704794 - 财政年份:1997
- 资助金额:
$ 11.28万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Methods in Systems Theory
数学科学:系统论中的代数方法
- 批准号:
9610389 - 财政年份:1997
- 资助金额:
$ 11.28万 - 项目类别:
Continuing Grant