Global Ricci and scalar curvature problems in semi-Riemannian geometry
半黎曼几何中的全局 Ricci 和标量曲率问题
基本信息
- 批准号:5407313
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2003
- 资助国家:德国
- 起止时间:2002-12-31 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No abstract available
没有可用的摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Felix Finster其他文献
Professor Dr. Felix Finster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Felix Finster', 18)}}的其他基金
Self-adjointness of Laplace and Dirac operators on Lorentzian manifolds foliated by noncompact hypersurfaces
非紧超曲面洛伦兹流形上拉普拉斯和狄拉克算子的自伴性
- 批准号:
441840529 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Priority Programmes
Dirac Waves in the Kerr Geometry: Integral Representations, Mass Oscillation Property and the Hawking Effect
克尔几何中的狄拉克波:积分表示、质量振荡特性和霍金效应
- 批准号:
262201789 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Ein Fermionsystem in diskreter Raumzeit und sein Kontinuumslimes
离散时空中的费米子系统及其连续极限
- 批准号:
46465371 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Lineare Hyperbolische Gleichungen in der Geometrie eines Schwarzen Loches
黑洞几何中的线性双曲方程
- 批准号:
5431496 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Ricci孤立子上的几何与分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Ricci曲率下界流形的退化理论研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于半实物孪生特征空间Ricci流方法的柔性轴联系统健康评估研究
- 批准号:52375109
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
四维梯度Ricci孤立子的几何与拓扑
- 批准号:12301062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
离散Ricci流的研究
- 批准号:12301069
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
离散Ricci流及其应用
- 批准号:12371056
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
Ricci流的相关研究及其几何应用
- 批准号:12371059
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
Kähler-Ricci流的奇性分析
- 批准号:12371057
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
Ricci流与Ricci孤立子的研究
- 批准号:LY23A010016
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
Ricci曲率非负的流形上多项式增长的调和函数
- 批准号:12271531
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Spaces with Ricci curvature bounded below
具有下界的里奇曲率空间
- 批准号:
2304698 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Geometric analysis on graphs with Ricci curvature bounded from below
下界里奇曲率图的几何分析
- 批准号:
23K03103 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
DMS/NIGMS 1: Data-driven Ricci curvatures and spectral graph for machine learning and adaptive virtual screening
DMS/NIGMS 1:用于机器学习和自适应虚拟筛选的数据驱动的 Ricci 曲率和谱图
- 批准号:
2245903 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometric analysis on spaces equipped with modifications of the Ricci curvature
带有修正里奇曲率的空间的几何分析
- 批准号:
22K13915 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
- 批准号:
RGPAS-2021-00037 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
- 批准号:
RGPIN-2021-03589 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
対称空間の観点からの Damek-Ricci 空間の一般化とその幾何構造の研究
对称空间视角下Damek-Ricci空间的推广及其几何结构研究
- 批准号:
22K13919 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Taub-Bolt and Taub-NUT solutions and their behaviour under the Ricci flow
Taub-Bolt 和 Taub-NUT 解及其在 Ricci 流下的行为
- 批准号:
2747335 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship