Collaboration on Inverse Problems Using Holographic Image Data; Using RAM Theory
使用全息图像数据开展反问题合作;
基本信息
- 批准号:9802309
- 负责人:
- 金额:$ 12.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator and her colleague Yulia Karpeshina will collaborate to solve inverse problems for holographic image data using Kolmogorov-Arnold-Moser (KAM) theory. The goal is to use selected level sets of mode shapes of vibrating systems as data for the inverse problem. With these level sets as data, formulas will be established. The formulas will then be used to determine physical properties of the system, such as density or stiffness. The results will be based on perturbation results for the natural frequencies and the mode shapes. The difficulty in establishing these results arises from the fact that a small divisor problem and a sequence of Eikonal equations must be solved simultaneously. A consequence of the resultant mathematical structure will be that the perturbed quantities can be strongly different from the unperturbed quantities. McLaughlin's graduate student will concentrate on developing formulas to use the data and on numerical implementation of those formulas.The goal with this work is to consider membrane like materials, such as a thin slice of biological tissue. Excite this membrane with an oscillating force and suppose the frequency of oscillation is a natural frequency, that is, a frequency where the membrane gives a large response. Illuminating the vibrating surface with two lasers we see a dark and light line pattern. Each line is a level set of the vibrating surface. Now assume that the membrane is nonhomogeneous; it could be more stiff or less stiff in some places. [In the biological example, increased stiffness can indicate the presence of rapidly dividing cells. In a mechanical example, decreased stiffness can indicate deterioration of the material.] The goal is to determine the stiffness variations without altering the membrane, that is, to find a nondestructive test for the stiffness variations. Our data is the dark and light line pattern. The problem is difficult because the stiffness variations can have (but not always) a very large perturbative effect on the pattern. The mathematics will establish when the perturbation is large, when it is not, and what formulas will yield the stiffness variations from this particular data set.
首席研究员和她的同事尤利娅·卡佩希娜将合作解决全息图像数据的反问题,使用Kolmogorov-Arnold-Moser(KAM)理论。目标是使用选定的振动系统振型的水平集作为反问题的数据。以这些水平集为数据,建立公式。然后,这些公式将被用来确定系统的物理属性,如密度或刚度。结果将基于对固有频率和振型的摄动结果。建立这些结果的困难源于这样一个事实,即必须同时求解一个小因子问题和一系列Eikonal方程。所得到的数学结构的结果将是扰动量可能与未扰动量有很大的不同。麦克劳克林的研究生将专注于开发使用这些数据的公式,并对这些公式进行数值实现。这项工作的目标是考虑膜状材料,如生物组织的薄片。用振荡力激励这个膜,假设振动的频率是一个自然频率,也就是膜产生大响应的频率。用两个激光照射振动的表面,我们看到了一种暗淡的线条图案。每一条直线都是振动表面的一个水平集。现在假设膜是不均匀的;它可能在某些地方变得更硬或更不硬。[在生物学的例子中,僵硬的增加可以表明存在快速分裂的细胞。在一个机械的例子中,刚性降低可能表明材料的劣化。]目标是在不改变膜的情况下确定刚度变化,即找到一种无损测试刚度变化的方法。我们的数据是深浅相间的线条图案。这个问题是困难的,因为刚度的变化可能会对图案产生非常大的扰动影响(但并不总是)。数学将确定什么时候扰动很大,什么时候不大,以及从这个特定的数据集得出刚度变化的公式是什么。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joyce McLaughlin其他文献
Joyce McLaughlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joyce McLaughlin', 18)}}的其他基金
SM: Five Inverse Problems Workshops targeting Computational and Applied Mathematics together with Application Areas
SM:针对计算和应用数学以及应用领域的五个反问题研讨会
- 批准号:
0852516 - 财政年份:2009
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Participant Funding: IPRPI Opening Conference
参与者资助:IPRPI 开幕会议
- 批准号:
0425004 - 财政年份:2004
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Participant Funding: Applied Inverse Problems - Theoretical and Computational Aspects
参与者资助:应用反问题 - 理论和计算方面
- 批准号:
0307794 - 财政年份:2003
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
FRG: Solutions for Inverse Problems
FRG:反问题的解决方案
- 批准号:
0101458 - 财政年份:2001
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Nodal Problems and Perturbation Theory in Higher Dimensions
数学科学:高维逆节点问题和微扰理论
- 批准号:
9410700 - 财政年份:1994
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Mathematical Sciences: Applied Mathematics Graduate ResearchTraineeship
数学科学:应用数学研究生研究实习
- 批准号:
9256302 - 财政年份:1993
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Inverse Nodal Problems in Two Dimensions (Mathematics)
二维逆节点问题(数学)
- 批准号:
8902967 - 财政年份:1990
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Mathematical Sciences: An Inverse Spectral Theory Problem for Bounded Domains in Two or More Dimensions
数学科学:二维或多维有界域的反谱理论问题
- 批准号:
8713722 - 财政年份:1987
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
相似国自然基金
新型简化Inverse Lax-Wendroff方法的发展与应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
- 批准号:11801143
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 12.42万 - 项目类别:
Research Grant
Travel: US Participation at the 11th International Conference on Inverse Problems in Engineering
出差:美国参加第11届工程反问题国际会议
- 批准号:
2347919 - 财政年份:2024
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Understanding, Predicting and Controlling AI Hallucination in Diffusion Models for Image Inverse Problems
理解、预测和控制图像逆问题扩散模型中的 AI 幻觉
- 批准号:
2906295 - 财政年份:2024
- 资助金额:
$ 12.42万 - 项目类别:
Studentship
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
- 批准号:
23K13012 - 财政年份:2023
- 资助金额:
$ 12.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
- 批准号:
2306411 - 财政年份:2023
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Conference: CBMS Conference: Inverse Problems and Nonlinearity
会议:CBMS 会议:反问题和非线性
- 批准号:
2329399 - 财政年份:2023
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Gaussian process regression for Bayesian inverse problems
贝叶斯逆问题的高斯过程回归
- 批准号:
EP/X01259X/1 - 财政年份:2023
- 资助金额:
$ 12.42万 - 项目类别:
Research Grant
LEAPS-MPS: Splitting All-At-Once Approach to Inverse Medium Scattering Problems
LEAPS-MPS:解决逆介质散射问题的一次性分裂方法
- 批准号:
2316843 - 财政年份:2023
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324369 - 财政年份:2023
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324368 - 财政年份:2023
- 资助金额:
$ 12.42万 - 项目类别:
Standard Grant