FRG: Solutions for Inverse Problems

FRG:反问题的解决方案

基本信息

  • 批准号:
    0101458
  • 负责人:
  • 金额:
    $ 101.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2005-08-31
  • 项目状态:
    已结题

项目摘要

In the work proposed here, four researchers at Rensselaer Polytechnic Institute work in teams with postdocs and graduate students to solve inverse problems. The goal is to identify material properties or surface features from indirectly related data sets. Each problem is modeled as an elastic, electromagnetic, or acoustic medium and the mathematical model is strongly taken into account to develop solution techniques. Two of the four problems to be considered are: (1) find variations in stiffness in biological tissue so that regions that are abnormal (usually with 7 to 17 times stiffer than normal tissue) can be identified. The model is the equations of elasticity and measurement of low frequency propagating shear waves using Doppler ultrasound provide the data. Noise reduction, use of models with random media, determination of the minimum size of abnormal regions that can be identified, reconstruction algorithms and images are all targets of this investigation; and (2) create radar images from satellite or airborne radar equipment by developing solutions that correct for deviations from ideal flight paths, that correctly identify object positions (break left-right symmetry problems) and that can image objects that are moving. The problems involve establishing mathematical results, utilizing engineering expertise and development and implementation of numerical algorithms.In this work, four principal investigators, together with postdocs and graduate students, solve problems where noninvasive sensing is followed by the creation of images. To solve these problems, the researchers work in teams to combine mathematical analysis, engineering and numerical computation to achieve results. Two of the problems that will be addressed are: (a) elastography with ultrasound measurements of tissue movement created by a second low level propagated signal yields data that can distinguish the stiffer tissue of cancerous tumors from normal tissue. The goal, then, is to determine algorithms for computing the location of the stiff and normal regions, to find the minimum size of regions that can be identified, and to create images in 'real time';(b) airborne and satellite topographic and object sensing where signals reflected from the earth's surface are used to locate positions of objects and topographic features. The goal is to improve resolution and accuracy, to reduce the size of objects and features that can be identified and to correctly represent features that are partially hidden from view.
在这里提出的工作中,伦斯勒理工学院的四名研究人员与博士后和研究生合作解决逆问题。目标是从间接相关的数据集中识别材料特性或曲面特征。每个问题都被建模为弹性、电磁或声学介质,并且数学模型被强烈地考虑以开发解决技术。要考虑的四个问题中的两个是:(1)找出生物组织中硬度的变化,以便识别异常区域(通常是正常组织的7到17倍)。该模型是弹性力学方程,利用多普勒超声测量低频传播的剪切波提供了数据。降噪、使用随机介质模型、确定可以识别的异常区域的最小尺寸、重建算法和图像都是本次调查的目标;以及(2)通过开发解决方案,纠正偏离理想飞行路线的偏差,正确识别物体位置(打破左右对称问题),并对运动物体成像,从卫星或机载雷达设备创建雷达图像。这些问题涉及建立数学结果、利用工程专业知识以及开发和实施数值算法。在这项工作中,四名主要研究人员与博士后和研究生一起解决了非侵入性传感之后是图像创建的问题。为了解决这些问题,研究人员团队合作,将数学分析、工程和数值计算结合起来,以取得结果。将解决的两个问题是:(A)弹性成像与第二个低电平传播信号产生的组织运动的超声波测量产生的数据可以区分癌症肿瘤较硬的组织与正常组织。因此,目标是确定计算僵硬和正常区域的位置的算法,找到可识别的区域的最小尺寸,并‘实时’创建图像;(B)机载和卫星地形和物体传感,其中使用从地球表面反射的信号来定位物体的位置和地形特征。目标是提高分辨率和精度,减小可识别的对象和特征的大小,并正确地表示部分隐藏在视线之外的特征。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joyce McLaughlin其他文献

Joyce McLaughlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joyce McLaughlin', 18)}}的其他基金

SM: Five Inverse Problems Workshops targeting Computational and Applied Mathematics together with Application Areas
SM:针对计算和应用数学以及应用领域的五个反问题研讨会
  • 批准号:
    0852516
  • 财政年份:
    2009
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Standard Grant
Participant Funding: IPRPI Opening Conference
参与者资助:IPRPI 开幕会议
  • 批准号:
    0425004
  • 财政年份:
    2004
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Standard Grant
Participant Funding: Applied Inverse Problems - Theoretical and Computational Aspects
参与者资助:应用反问题 - 理论和计算方面
  • 批准号:
    0307794
  • 财政年份:
    2003
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Standard Grant
Collaboration on Inverse Problems Using Holographic Image Data; Using RAM Theory
使用全息图像数据开展反问题合作;
  • 批准号:
    9802309
  • 财政年份:
    1998
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Inverse Nodal Problems and Perturbation Theory in Higher Dimensions
数学科学:高维逆节点问题和微扰理论
  • 批准号:
    9410700
  • 财政年份:
    1994
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applied Mathematics Graduate ResearchTraineeship
数学科学:应用数学研究生研究实习
  • 批准号:
    9256302
  • 财政年份:
    1993
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Standard Grant
Inverse Nodal Problems in Two Dimensions (Mathematics)
二维逆节点问题(数学)
  • 批准号:
    8902967
  • 财政年份:
    1990
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Standard Grant
Mathematical Sciences: An Inverse Spectral Theory Problem for Bounded Domains in Two or More Dimensions
数学科学:二维或多维有界域的反谱理论问题
  • 批准号:
    8713722
  • 财政年份:
    1987
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Standard Grant

相似海外基金

I-Corps: Fast and Accurate Artificial Intelligence/Machine Learning Solutions to Inverse and Imaging Problems
I-Corps:针对逆向和成像问题的快速准确的人工智能/机器学习解决方案
  • 批准号:
    2224299
  • 财政年份:
    2022
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Standard Grant
Asymptotic expansions of ODE type solutions and their related inverse problems
ODE型解的渐近展开及其相关反问题
  • 批准号:
    20F20327
  • 财政年份:
    2020
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2017
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: New statistically-motivated solutions to classical inverse problems
协作研究:经典反问题的新统计驱动解决方案
  • 批准号:
    1611791
  • 财政年份:
    2016
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Standard Grant
Inverse solutions for localization of biomagnetic activity in heart and brain (B03)
心脏和大脑生物磁活动定位的逆解 (B03)
  • 批准号:
    318830561
  • 财政年份:
    2016
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Collaborative Research Centres
Collaborative Research: New statistically-motivated solutions to classical inverse problems
协作研究:经典反问题的新统计驱动解决方案
  • 批准号:
    1737929
  • 财政年份:
    2016
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Standard Grant
Collaborative Research: New stochastically-motivated solutions to classical inverse problems
合作研究:经典反问题的新随机驱动解决方案
  • 批准号:
    1612891
  • 财政年份:
    2016
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Standard Grant
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2016
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Discovery Grants Program - Individual
Renovating solutions and applications of coefficient inverse problems for partial differential equations
偏微分方程系数反问题的更新解及应用
  • 批准号:
    15H05740
  • 财政年份:
    2015
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
  • 批准号:
    RGPIN-2014-04642
  • 财政年份:
    2015
  • 资助金额:
    $ 101.09万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了