Least-Squares Finite Element Methods and Optimization-Based Domain Decomposition Methods for Partial Differential Equations
偏微分方程的最小二乘有限元方法和基于优化的域分解方法
基本信息
- 批准号:9806358
- 负责人:
- 金额:$ 10.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-15 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9806358 Gunzburger In the last few years, the engineering and mathematical communities have shown increasing interest in least-squares finite element methods for solving a variety of problems in fluids, electromagnetics, elasticity, and other applications. The great promise of least-squares methods arises from the fact that, when compared to other discretization schemes, they lead to discrete problems that are much easier to solve on a computer. In the past the PI has studied numerous facets of least-squares finite element methods. These include: the use of mesh-dependent weights in least-squares functionals in order to achieve optimally accuracy, the solution of practical implementation issues that needed to be addressed in order to make these methods practical and competitive, and the application of these methods to problems with discontinuous coefficients that arise, e.g., from inhomogeneous media properties. The PI plans to apply least-squares finite element methodologies to optimization and control problems and to develop, analyze, and implement domain decomposition algorithms in the least-squares setting. Domain decomposition methods have attracted even more attention due to their usefulness in a parallel processing environment. The PI has developed novel non-overlapping domain decomposition methods based on optimization or optimal control ideas that posses numerous desirable features, the most important perhaps being that they are easily extended to nonlinear problems. The PI plans to introduce preconditioners to speed-up the performance of the methods, to look at different functionals and optimization parameters on which to base the decomposition into subdomains so that again more efficient algorithms are obtained, to apply and analyze algorithms to the solution of optimization problems for partial differential equations, to develop algorithms for time-dependent problems, and to implement algorithms on parallel computers consisting of clusters of Pentium processors.
小行星9806358 在过去的几年中,工程和数学界对最小二乘有限元法越来越感兴趣,用于解决流体,电磁学,弹性和其他应用中的各种问题。最小二乘方法的巨大希望来自于这样一个事实,即与其他离散化方案相比,它们导致的离散问题更容易在计算机上解决。在过去,PI研究了最小二乘有限元法的许多方面。其中包括:在最小二乘泛函中使用网格相关权重以实现最佳精度,解决需要解决的实际实现问题以使这些方法实用和具有竞争力,以及将这些方法应用于出现的具有不连续系数的问题,例如,不均匀的介质特性。PI计划将最小二乘有限元方法应用于优化和控制问题,并在最小二乘设置中开发,分析和实施区域分解算法。 区域分解方法由于其在并行处理环境中的有用性而引起了更多的关注。PI已经开发了基于优化或最优控制思想的新型非重叠区域分解方法,这些方法具有许多理想的功能,最重要的可能是它们很容易扩展到非线性问题。PI计划引入预处理器来加速方法的性能,查看不同的泛函和优化参数,以将其分解为子域,从而再次获得更有效的算法,应用和分析算法来解决偏微分方程的优化问题,开发时间相关问题的算法,并在由奔腾处理器集群组成的并行计算机上实现算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Max Gunzburger其他文献
Pinning effects in two-band superconductors
- DOI:
10.1016/j.physc.2018.10.004 - 发表时间:
2018-12-15 - 期刊:
- 影响因子:
- 作者:
K. Chad Sockwell;Max Gunzburger;Janet Peterson - 通讯作者:
Janet Peterson
A least-squares finite element method for a nonlinear Stokes problem in glaciology
- DOI:
10.1016/j.camwa.2015.11.001 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:
- 作者:
Irene Sonja Monnesland;Eunjung Lee;Max Gunzburger;Ryeongkyung Yoon - 通讯作者:
Ryeongkyung Yoon
An end-to-end deep learning method for solving nonlocal Allen–Cahn and Cahn–Hilliard phase-field models
一种用于求解非局部 Allen–Cahn 和 Cahn–Hilliard 相场模型的端到端深度学习方法
- DOI:
10.1016/j.cma.2024.117721 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:7.300
- 作者:
Yuwei Geng;Olena Burkovska;Lili Ju;Guannan Zhang;Max Gunzburger - 通讯作者:
Max Gunzburger
An Improved Discrete Least-Squares/Reduced-Basis Method for Parameterized Elliptic PDEs
- DOI:
10.1007/s10915-018-0661-6 - 发表时间:
2018-02-27 - 期刊:
- 影响因子:3.300
- 作者:
Max Gunzburger;Michael Schneier;Clayton Webster;Guannan Zhang - 通讯作者:
Guannan Zhang
A generalized nonlocal vector calculus
- DOI:
10.1007/s00033-015-0514-1 - 发表时间:
2015-03-25 - 期刊:
- 影响因子:1.600
- 作者:
Bacim Alali;Kuo Liu;Max Gunzburger - 通讯作者:
Max Gunzburger
Max Gunzburger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Max Gunzburger', 18)}}的其他基金
Collaborative Research: Hybrid Fluid-Structure Interaction Material Point Method with applications to Large Deformation Problems in Hemodynamics
合作研究:混合流固耦合质点法及其在血流动力学大变形问题中的应用
- 批准号:
1912705 - 财政年份:2019
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
Workshop on Quantification of Uncertainty: Improving Efficiency and Technology
不确定性量化研讨会:提高效率和技术
- 批准号:
1707658 - 财政年份:2017
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
Algorithms and modeling for nonlocal models of diffusion and mechanics and for plasmas
扩散和力学非局部模型以及等离子体的算法和建模
- 批准号:
1315259 - 财政年份:2013
- 资助金额:
$ 10.26万 - 项目类别:
Continuing Grant
Discrete and continuous nonlocal material models and their coupling
离散和连续非局部材料模型及其耦合
- 批准号:
1013845 - 财政年份:2010
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
Uncertainty Quantification for Systems Governed by Partial Differential Equations; May 2010; Edinburgh, Scotland
偏微分方程控制系统的不确定性量化;
- 批准号:
0932948 - 财政年份:2009
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
CMG Collaborative Proposal: Multiphysics and multiscale modeling, computations, and experiments for Karst aquifers
CMG 协作提案:喀斯特含水层的多物理场和多尺度建模、计算和实验
- 批准号:
0620035 - 财政年份:2006
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
Collaborative Proposal: A Geometric Method for Image Registration
协作提案:图像配准的几何方法
- 批准号:
0612389 - 财政年份:2006
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
Information Technology Research (ITR): Building the Tree of Life -- A National Resource for Phyloinformatics and Computational Phylogenetics
信息技术研究(ITR):构建生命之树——系统信息学和计算系统发育学的国家资源
- 批准号:
0331495 - 财政年份:2003
- 资助金额:
$ 10.26万 - 项目类别:
Cooperative Agreement
Finite Element Methods for Two Problems for Hyperbolic Partial Differential Equations
双曲偏微分方程两个问题的有限元方法
- 批准号:
0308845 - 财政年份:2003
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
Centroidal Voronoi Tessellations: Algorithms, Applications, and Theory
质心 Voronoi 曲面细分:算法、应用和理论
- 批准号:
9988303 - 财政年份:2000
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
相似海外基金
Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
- 批准号:
2208404 - 财政年份:2022
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
First-order system least squares finite elements for finite elasto-plasticity
有限弹塑性的一阶系统最小二乘有限元
- 批准号:
255798245 - 财政年份:2014
- 资助金额:
$ 10.26万 - 项目类别:
Priority Programmes
CDS&E: Collaborative Research: Least-Squares Finite Element Methods for Data Assimilation in Large-Scale Simulations
CDS
- 批准号:
1249950 - 财政年份:2012
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Least-Squares Finite Element Methods for Data Assimilation in Large-Scale Simulations
CDS
- 批准号:
1249858 - 财政年份:2012
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
RUI: Investigation of Discontinuous Galerkin Least-Squares Finite Element Methods for Singularly Perturbed Problems
RUI:奇异摄动问题的不连续伽辽金最小二乘有限元方法研究
- 批准号:
1217268 - 财政年份:2012
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
RUI: Adaptively Weighted Finite Element Methods for PDEs and Optimal Least-Squares Metrics
RUI:偏微分方程和最优最小二乘度量的自适应加权有限元方法
- 批准号:
1216297 - 财政年份:2012
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
Gemischte Least-Squares Finite Elemente für geometrisch nichtlineare Probleme der Festkörpermechanik
固体力学中几何非线性问题的混合最小二乘有限元
- 批准号:
211302948 - 财政年份:2011
- 资助金额:
$ 10.26万 - 项目类别:
Research Grants
CAREER: Multilevel Discontinuous Least-Squares Finite Element Methods
职业:多级不连续最小二乘有限元方法
- 批准号:
0746676 - 财政年份:2008
- 资助金额:
$ 10.26万 - 项目类别:
Continuing Grant
Least-Squares Finite Element Methods for Nonlinear Partial Differential Equations
非线性偏微分方程的最小二乘有限元法
- 批准号:
0511430 - 财政年份:2005
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
Collaborative Research: The Least-Squares Meshfree Particle Finite Element Method
合作研究:最小二乘无网格粒子有限元法
- 批准号:
0310609 - 财政年份:2003
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant














{{item.name}}会员




