Interface Dipolar Engineering in III-V Semiconductors

III-V 族半导体中的界面偶极子工程

基本信息

  • 批准号:
    9819659
  • 负责人:
  • 金额:
    $ 64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-04-15 至 2003-03-31
  • 项目状态:
    已结题

项目摘要

This FRG (Focused Research Group) project aims for greater understanding of materials science and device physics aspects of dipole layers at heterojunction interfaces, and to modify them for improved device performance across a variety of common compound semiconductor structures: lasers, HBTs, MOSFETs, HEMTs, and Schottky barriers. The project involves theory, growth, characterization, and prototype device studies. First principle calculations will be performed by collaborators at EPFL (Switzerland), and coupled with material processing for improved device performance. Recently dual purpose molecular beam epitaxy (MBE) facilities devoted to the exploration of interface properties and the fabrication of working devices have produced tunability of band offsets and Schottky barriers through local modifications of the atomic termination of critical interfaces. In parallel with experiment, a convergence of different theoretical models, including first principles calculations, the theoretical alchemy approach and linear response theory results, are establishing a common theoretical framework. Most theoretical and experimental studies have identified heterovalent semiconductor junctions with polar orientation as those that exhibit the strongest dependence of interface properties on local interface termination. Therefore IV/III-V, II-VI/III-V, III-V/IV/III-V and III--V/II-VI/III-V interfaces may represent a class of highly tunable interface systems, as compared to the more conventional isovalent systems (e.g., III-V/III-V) where the valence difference across each interface allows fabrication of large electrostatic dipoles with orientation and magnitude largely controlled by the growth conditions.For heterojunction interfaces, parameters such as the valence and conduction band discontinuities, and the built-in potentials affect carrier confinement on both sides of the active region where radiative recombination occurs in heterojunction lasers, emitter efficiencies in HBT's, as well as the gate voltage swing and the gate leakage current in MOSFET and HEMT structures. For metal/semiconductor interfaces, present in all solid state devices, the possibility of reducing or increasing the Schottky barrier height without changing the doping of the semiconductor constituent would enhance ability to fabricate low resistivity contacts to new wide bandgap materials for which doping technology is still limited (e.g., III-V nitrides, silicon carbide, diamond), simplify the exploitation of ballistic transport in practical devices, decrease the leakage current in MESFET's, and potentially yield Schottky barrier photon detectors with tunable long -wavelength cut-off and/or lower dark currents. Thus, the project seeks to exploit heterovalency-induced, extrinsic local interface dipoles in a variety of III-V materials systems of current practical interest, including AlGaAs/GaAs, GaInAs/InP, GaInP/GaAs, and AlGaN/GaN. Different ultrathin heterovalent interlayers (e.g., Si, Ge, Si-C, Zn-O) will be fabricated by MBE to tune the band alignments as well as in related metal/semiconductor junctions. Interlayer type and growth conditions which minimize out-diffusion, and assess the range of offset tuning that can be achieved in high-quality, device grade structures will be determined. The ultimate goal is to clarify the microscopic mechanisms that determine the offset tuning while developing a series of new interfacial engineering principles for device optimization. This FRG project is co-supported by two NSF programs, and the MPS OMA(Office of Multidisciplinary Activities).%%%The project addresses basic research issues in a topical area of materials science and engineering having high potential technological relevance. The research will contribute new knowledge at a fundamental level to important fabrication aspects of electronic/photonic devices. The basic knowledge and understanding gained from the research is expected to contribute to improving the perform-ance and stability of advanced devices and circuits. An important feature of the program is the integration of research and education through the training of students in a fundamentally and technologically significant area.***
该FRG(重点研究小组)项目旨在更好地了解异质结界面偶极子层的材料科学和器件物理方面,并对其进行修改,以提高各种常见化合物半导体结构(激光器、HBTs、mosfet、hemt和肖特基势垒)的器件性能。该项目涉及理论、发展、特性和原型装置研究。第一性原理计算将由EPFL(瑞士)的合作者进行,并结合材料处理以提高设备性能。最近,双用途分子束外延(MBE)设备致力于探索界面性质和工作器件的制造,通过局部修改关键界面的原子终端,产生了能带偏移和肖特基势垒的可调性。在实验的同时,不同理论模型的融合,包括第一性原理计算、理论炼金术方法和线性响应理论结果,正在建立一个共同的理论框架。大多数理论和实验研究已经确定了具有极性取向的异价半导体结,这些结表现出对局部界面终止的最强依赖性。因此,IV/III-V, II-VI/III-V, III-V/IV/III-V和III—V/II-VI/III-V界面可能代表一类高度可调的界面系统,与更传统的等价系统(例如III-V/III-V)相比,每个界面的价差允许制造大型静电偶极子,其取向和大小主要由生长条件控制。对于异质结界面,诸如价带不连续、导带不连续和内置电位等参数影响异质结激光器中发生辐射复合的有源区域两侧的载流子约束、HBT中的发射极效率,以及MOSFET和HEMT结构中的栅极电压摆幅和栅极漏电流。对于存在于所有固态器件中的金属/半导体界面,在不改变半导体成分掺杂的情况下降低或增加肖特基势垒高度的可能性,将增强与掺杂技术仍然有限的新型宽带隙材料(例如III-V型氮化物、碳化硅、金刚石)制造低电阻率触点的能力,简化实际器件中弹道输运的开发。减少MESFET的泄漏电流,并有可能产生具有可调谐长波长截止和/或更低暗电流的肖特基势垒光子探测器。因此,该项目寻求在当前实际兴趣的各种III-V材料系统中利用杂价诱导的外源性局部界面偶极子,包括AlGaAs/GaAs, GaInAs/InP, GaInP/GaAs和AlGaN/GaN。不同的超薄异价间层(例如,Si, Ge, Si- c, Zn-O)将由MBE制造,以调整能带对准以及相关的金属/半导体结。将确定层间类型和生长条件,以最大限度地减少向外扩散,并评估可在高质量器件级结构中实现的偏移调谐范围。最终目标是阐明确定偏置调谐的微观机制,同时为器件优化开发一系列新的界面工程原理。该FRG项目由两个NSF项目和MPS OMA(多学科活动办公室)共同支持。该项目涉及材料科学与工程领域的基础研究问题,具有很高的潜在技术相关性。该研究将在基础层面为电子/光子器件的重要制造方面提供新的知识。从研究中获得的基本知识和理解有望有助于提高先进器件和电路的性能和稳定性。该计划的一个重要特点是通过在基础和技术重要领域培养学生,将研究和教育相结合

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marshall Nathan其他文献

Aneurysmal bone cyst of the larynx
  • DOI:
    10.1016/s0196-0709(86)80027-8
  • 发表时间:
    1986-09-10
  • 期刊:
  • 影响因子:
  • 作者:
    Harry E. Schilling;G. David Neal;Marshall Nathan;Thomas B. Aufdemorte
  • 通讯作者:
    Thomas B. Aufdemorte

Marshall Nathan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marshall Nathan', 18)}}的其他基金

SGER: Performance Enhanced Organic FETs by Built in Strain in Organic Materials
SGER:通过有机材料内置应变增强有机 FET 的性能
  • 批准号:
    0225025
  • 财政年份:
    2002
  • 资助金额:
    $ 64万
  • 项目类别:
    Standard Grant
Uniaxial and Hydrostatic Stress on Group III-nitride Heterojunctions and Schottky Barriers
III 族氮化物异质结和肖特基势垒的单轴应力和静水应力
  • 批准号:
    0140164
  • 财政年份:
    2002
  • 资助金额:
    $ 64万
  • 项目类别:
    Standard Grant
Stress Effects in III-V Heterostructures
III-V 异质结构中的应力效应
  • 批准号:
    9612539
  • 财政年份:
    1997
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Tunable Schottky Barriers
可调谐肖特基势垒
  • 批准号:
    9525758
  • 财政年份:
    1996
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Large Gap Insulator on Gallium Arsenide and Related Materials
砷化镓大间隙绝缘体及相关材料
  • 批准号:
    9116436
  • 财政年份:
    1992
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Uniaxial Stress Dependent Studies Related to III-V Semiconductor Devices
与 III-V 半导体器件相关的单轴应力相关研究
  • 批准号:
    8803928
  • 财政年份:
    1988
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant

相似海外基金

Exploring the Properties of Quantum Many-Body Scar States in Dipolar Gases
探索偶极气体中量子多体疤痕态的性质
  • 批准号:
    2308540
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Dipolar Correlations in Amphidynamic Crystalline Rotor Arrays
两栖晶体转子阵列中的偶极相关性
  • 批准号:
    2203519
  • 财政年份:
    2022
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Magnetic order in disordered dipolar nanostructures
无序偶极纳米结构中的磁序
  • 批准号:
    2203933
  • 财政年份:
    2022
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Controlling Magnetic Excitation Pathways via Molecular Design of Anisotropic Dipolar Spin Arrays
通过各向异性偶极自旋阵列的分子设计控制磁激发路径
  • 批准号:
    2154830
  • 财政年份:
    2022
  • 资助金额:
    $ 64万
  • 项目类别:
    Standard Grant
Simulation of dipolar colloids with depletion interactions
具有耗尽相互作用的偶极胶体模拟
  • 批准号:
    562899-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 64万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of molecular transformation based on generation of higher ordered dipolar species utilizing 1,3-dipoles
基于利用 1,3-偶极子生成更高阶偶极物种的分子转化的发展
  • 批准号:
    21K05050
  • 财政年份:
    2021
  • 资助金额:
    $ 64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Single impurity in a dipolar Bose-Einstein condensate
偶极玻色-爱因斯坦凝聚体中的单一杂质
  • 批准号:
    2609873
  • 财政年份:
    2021
  • 资助金额:
    $ 64万
  • 项目类别:
    Studentship
Ultracold Quantum Matter with Dipolar Molecules
具有偶极分子的超冷量子物质
  • 批准号:
    516603-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 64万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Control of organic molecule-based chiroptical properties by cyclic arrangement of dipolar units
通过偶极单元的循环排列控制基于有机分子的手性光学性质
  • 批准号:
    20K22528
  • 财政年份:
    2020
  • 资助金额:
    $ 64万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Exploring Excited-State 1D Dipolar Quantum Matter with Dysprosium Gases
用镝气体探索激发态一维偶极量子物质
  • 批准号:
    2006149
  • 财政年份:
    2020
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了