Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
基本信息
- 批准号:0200226
- 负责人:
- 金额:$ 11.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Hans Lindblad, Univ. of Cal. San DiegoDMS-0200226Abstract:Lindblad's research concerns basic mathematical questions for systems of nonlinear hyperbolic equations in mathematical physics. These include several important equations in classical field theory and continuum mechanics as well as in classical physics, e.g. Einstein's equations in general relativity and the equation of fluids and elastic bodies. These basic questions are: (i) Do we have local existence and uniqueness of solutions in a certain class? (ii) Do we have blow-up of solutions? (e.g. black holes in general relativity) (iii) What is the long time behavior of solutions? More specifically, Lindblad is mainly working on two projects. One on proving the well-posedness for a class of problems that occur in fluid dynamics and general relativity, in particular proving the well-posedness for the free boundary problem of the motion of the surface of a fluid in vacuum. A long term goal is to study the long time behavior of astrophysical bodies such as gaseous stars as well as the surface of the ocean. Another project is to study global solutions of equations related to Einstein's equations. A long term goal is to simplify and generalize the global existence results for Einstein's equations. These two problems are related to the question of whether the fundamental equations in physics have global solutions. Solution to these questions could have important consequences. For instance, it is conceivable that one could use the knowledge obtained from the solutions of Einstein's equations to permit the use of gravitational waves to observe the Universe. Understanding the properties of and controlling the interface between two fluids could have industrial applications. To solve these problems Lindblad and his collaborators are developing new techniques that could be useful for studying many other problems as well. In particular, they are using geometric methods to study hyperbolic differential equations.
主要研究者:Hans Lindblad,加州大学圣地亚哥分校DMS-0200226摘要:Lindblad的研究涉及数学物理中的非线性双曲方程系统的基本数学问题。 其中包括经典场论和连续介质力学以及经典物理学中的几个重要方程,例如广义相对论中的爱因斯坦方程和流体和弹性体方程。 这些基本问题是:(i)解的局部存在唯一性 在某个班级? (ii)我们有解的爆破吗? (e.g.(3)解的长时间行为是什么?更具体地说,Lindblad主要从事两个项目。一类是证明流体力学和广义相对论中一类问题的适定性,特别是证明真空中流体表面运动的自由边界问题的适定性。长期目标是研究气态恒星以及海洋表面等天体物理体的长期行为。另一个项目是研究与爱因斯坦方程相关的方程的整体解。长期目标是简化和推广爱因斯坦方程的整体存在性结果。 这两个问题涉及到物理学中的基本方程是否有整体解的问题。 这些问题的解决可能会产生重要的后果。例如,可以想象,人们可以使用从爱因斯坦方程的解中获得的知识来允许使用引力波来观察宇宙。了解两种流体的性质并控制它们之间的界面可能具有工业应用价值。 为了解决这些问题,Lindblad和他的合作者正在开发新的技术,这些技术也可以用于研究许多其他问题。特别是,他们正在使用几何方法研究双曲微分方程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans Lindblad其他文献
A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro
瑞典克朗、美元和欧元的同步模型
- DOI:
10.2139/ssrn.981114 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Peter Sellin;Hans Lindblad - 通讯作者:
Hans Lindblad
Scattering from infinity for semilinear wave equations satisfying the null condition or the weak null condition
满足零值条件或弱零值条件的半线性波动方程的无穷远散射
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0.7
- 作者:
Hans Lindblad;Volker Schlue - 通讯作者:
Volker Schlue
Blow-up for solutions of □u=|u|P with small initial data
- DOI:
10.1080/03605309908820708 - 发表时间:
1990 - 期刊:
- 影响因子:1.9
- 作者:
Hans Lindblad - 通讯作者:
Hans Lindblad
Global solutions of nonlinear wave equations
- DOI:
10.1002/cpa.3160450902 - 发表时间:
1992-10 - 期刊:
- 影响因子:3
- 作者:
Hans Lindblad - 通讯作者:
Hans Lindblad
A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time
- DOI:
10.1090/s0002-9939-03-07246-0 - 发表时间:
2002-10 - 期刊:
- 影响因子:0
- 作者:
Hans Lindblad - 通讯作者:
Hans Lindblad
Hans Lindblad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans Lindblad', 18)}}的其他基金
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
2247637 - 财政年份:2023
- 资助金额:
$ 11.13万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1500925 - 财政年份:2015
- 资助金额:
$ 11.13万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1101721 - 财政年份:2011
- 资助金额:
$ 11.13万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1249160 - 财政年份:2011
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1237212 - 财政年份:2011
- 资助金额:
$ 11.13万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0801120 - 财政年份:2008
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0500899 - 财政年份:2005
- 资助金额:
$ 11.13万 - 项目类别:
Continuing Grant
Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
非线性波动方程组解的存在性与扩展
- 批准号:
9970623 - 财政年份:1999
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
数学科学:非线性波动方程组解的存在性和放大
- 批准号:
9623207 - 财政年份:1996
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Existence and Blow-up of Solutions of Nonlinear Wave Equations
数学科学:非线性波动方程解的存在性与爆炸
- 批准号:
9306797 - 财政年份:1993
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
相似海外基金
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
2247637 - 财政年份:2023
- 资助金额:
$ 11.13万 - 项目类别:
Continuing Grant
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
- 批准号:
2306258 - 财政年份:2023
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1500925 - 财政年份:2015
- 资助金额:
$ 11.13万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1101721 - 财政年份:2011
- 资助金额:
$ 11.13万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1249160 - 财政年份:2011
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1237212 - 财政年份:2011
- 资助金额:
$ 11.13万 - 项目类别:
Continuing Grant
Studies on the sufficient conditions for the global existence of solutions to the exterior problems for nonlinear hyperbolic equations
非线性双曲方程外问题解全局存在的充分条件研究
- 批准号:
20540211 - 财政年份:2008
- 资助金额:
$ 11.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0801120 - 财政年份:2008
- 资助金额:
$ 11.13万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0500899 - 财政年份:2005
- 资助金额:
$ 11.13万 - 项目类别:
Continuing Grant
Existence and Stability of Non-classical Weak Solutions to Hyperbolic Conservation Laws
双曲守恒定律非经典弱解的存在性和稳定性
- 批准号:
15540221 - 财政年份:2003
- 资助金额:
$ 11.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)