Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics

数学物理中双曲微分方程解的存在性

基本信息

  • 批准号:
    1237212
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

This project is concerned with basic mathematical questions about systems of nonlinear hyperbolic differential equations in mathematical physics. These include many important equations in classical field theory and continuum mechanics (e.g., Einstein's equations of general relativity, Euler's equations for fluids). The basic questions are: (i) Do we have existence and uniqueness of solutions, and continuous dependence on data, in a certain class? (ii) Can solutions blow up (e.g., black holes in general relativity)? (iii) What is the long-time behavior of solutions? More specifically, the principal investigator is working in two main areas. One part of the project is to study the problem of existence of global solutions of Einstein's equations and of other related equations. The first goal is to simplify, generalize, and refine the existence results for Einstein's equations. A long-term objective is to study the stability of large solutions like black holes in general relativity. This is related to one of the central problems in mathematical relativity, namely, the cosmic censorship conjecture of Penrose. The question of stability or blow-up of large solutions is also the main question now in the area of nonlinear wave equations. A second component of the project involves studying a class of problems that occur in fluid dynamics and general relativity, in particular, proving the well-posedness for the free boundary problem of the motion of the surface of a fluid in a vacuum. The first goal in this area is to prove local existence. A longer-range goal is to study the long-time behavior of astrophysical bodies such as gaseous stars, along with other problems related to the interfaces between fluids and solids. To solve these problems the principal investigator and his collaborators are developing new techniques that could be useful for studying many other problems as well. In particular, they are using geometric methods to study hyperbolic differential equations.The principal investigator and his collaborators have recently simplified greatly the existence proof for solutions to Einstein's equations and their generalizations. The continuing refinement of those ideas that constitute part of the current project could have a significant impact. To name just one, the new approach should make it much easier for graduate students to study mathematical relativity. Moreover, the detailed asymptotic behavior that these methods reveal through the introduction of so-called harmonic coordinates will be useful to the physics and astronomical communities. Physicists are in the process of constructing large gravitational wave detectors to observe the universe. In order for the scientists to know what to look for with these instruments, there is a need for a large-scale effort in doing numerical calculations and simulations based on Einstein's equations. The only successful attempts hitherto to do so have been with the aid of harmonic coordinates. It is also conceivable that understanding the properties of and controlling the interface between two fluids could have industrial applications. In particular, there is a version of the problem for plasma physics in magneto-hydrodynamics. As is well known, the ability to control a plasma is essential to the construction of fusion reactors.
本项目研究数学物理中有关非线性双曲型微分方程组的基本数学问题。这些包括经典场论和连续介质力学中的许多重要方程(例如,爱因斯坦的广义相对论方程,欧拉的流体方程)。基本问题是:(i)我们是否有解的存在性和唯一性,以及对数据的连续依赖性,在一定的类?(ii)解决方案是否会爆炸(例如,广义相对论中的黑洞(iii)溶液的长期行为是什么?更具体地说,首席研究员在两个主要领域开展工作。该项目的一部分是研究爱因斯坦方程和其他相关方程的整体解的存在性问题。第一个目标是简化、推广和改进爱因斯坦方程的存在性结果。长期目标是研究广义相对论中黑洞等大解的稳定性。这与数学相对论的中心问题之一有关,即彭罗斯的宇宙审查猜想。大解的稳定性或爆破问题也是目前非线性波动方程研究领域的主要问题。该项目的第二个组成部分涉及研究流体动力学和广义相对论中出现的一类问题,特别是证明真空中流体表面运动的自由边界问题的适定性。这个领域的第一个目标是证明局部存在。一个更长远的目标是研究天体的长期行为,如气态恒星,沿着与流体和固体之间的界面有关的其他问题。为了解决这些问题,首席研究员和他的合作者正在开发新的技术,这些技术也可以用于研究许多其他问题。特别是,他们正在使用几何方法来研究双曲型微分方程。首席研究员和他的合作者最近大大简化了爱因斯坦方程及其推广的解的存在性证明。继续完善构成当前项目一部分的这些想法可能会产生重大影响。仅举一个例子,新方法应该使研究生更容易学习数学相对论。此外,这些方法通过引入所谓的调和坐标揭示的详细渐近行为将对物理学和天文学社区有用。物理学家正在建造大型引力波探测器来观测宇宙。为了让科学家们知道用这些仪器寻找什么,需要在爱因斯坦方程的基础上进行大规模的数值计算和模拟。迄今为止唯一成功的尝试是借助调和坐标。也可以想象,理解两种流体之间的界面的性质和控制可以具有工业应用。特别是,在磁流体力学中有一个等离子体物理问题的版本。众所周知,控制等离子体的能力对于建造聚变反应堆是必不可少的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hans Lindblad其他文献

A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro
瑞典克朗、美元和欧元的同步模型
  • DOI:
    10.2139/ssrn.981114
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Sellin;Hans Lindblad
  • 通讯作者:
    Hans Lindblad
Scattering from infinity for semilinear wave equations satisfying the null condition or the weak null condition
满足零值条件或弱零值条件的半线性波动方程的无穷远散射
Blow-up for solutions of □u=|u|P with small initial data
Global solutions of nonlinear wave equations
A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time
  • DOI:
    10.1090/s0002-9939-03-07246-0
  • 发表时间:
    2002-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hans Lindblad
  • 通讯作者:
    Hans Lindblad

Hans Lindblad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hans Lindblad', 18)}}的其他基金

Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    2247637
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1500925
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1101721
  • 财政年份:
    2011
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1249160
  • 财政年份:
    2011
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0801120
  • 财政年份:
    2008
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0500899
  • 财政年份:
    2005
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0200226
  • 财政年份:
    2002
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
非线性波动方程组解的存在性与扩展
  • 批准号:
    9970623
  • 财政年份:
    1999
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
数学科学:非线性波动方程组解的存在性和放大
  • 批准号:
    9623207
  • 财政年份:
    1996
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Existence and Blow-up of Solutions of Nonlinear Wave Equations
数学科学:非线性波动方程解的存在性与爆炸
  • 批准号:
    9306797
  • 财政年份:
    1993
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似海外基金

Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    2247637
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
  • 批准号:
    2306258
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1500925
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1101721
  • 财政年份:
    2011
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1249160
  • 财政年份:
    2011
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Studies on the sufficient conditions for the global existence of solutions to the exterior problems for nonlinear hyperbolic equations
非线性双曲方程外问题解全局存在的充分条件研究
  • 批准号:
    20540211
  • 财政年份:
    2008
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0801120
  • 财政年份:
    2008
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0500899
  • 财政年份:
    2005
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Existence and Stability of Non-classical Weak Solutions to Hyperbolic Conservation Laws
双曲守恒定律非经典弱解的存在性和稳定性
  • 批准号:
    15540221
  • 财政年份:
    2003
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0200226
  • 财政年份:
    2002
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了