Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
基本信息
- 批准号:1500925
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI's research concerns basic mathematical questions about systems of nonlinear hyperbolic differential equations in mathematical physics. These include many important equations in classical field theory and continuum mechanics; e.g. Einstein's equations of general relativity and Euler's equations of fluids. The basic questions concern existence, uniqueness and stability of solutions, as well as the question if solutions blow up (e.g. black holes in general relativity) and if not what the long time behavior of solutions are? More specifically, the PI is mainly working in two areas. One project is to study if Einstein's and related equations have solutions for all times or if the solutions blow up. A long term goal is to study the stability of large solutions like black holes and the big bang in general relativity. The motivation is to understand the large scale structure of our universe. The Physicists are building large gravitational wave detectors to observe the universe and the theory has to be developed together with observations. Another project is to study a class of problems that occur in fluid dynamics and general relativity, in particular, proving existence and stability for the free boundary problem of the motion of the surface of a fluid in vacuum (such as the surface of the ocean). A long term goal is to study the long time behavior of astrophysical bodies such as gaseous stars as well as other interface problems of fluids and solids. It is conceivable that understanding the properties of and controlling the interface between two fluids could have important applications. In particular there is a version of the problem in magneto-hydrodynamics and controlling the plasma is needed for constructing fusion reactors.To solve these problems the PI and collaborators are developing new techniques that could be useful for studying many other problems as well. In particular, they are using geometric methods combined with frequency decomposition methods to study hyperbolic differential equations. The PI's and collaborator's greatly simplified existence proof for Einstein's equations and its generalizations and refinements will have a large impact. Moreover the detailed asymptotic behavior they prove in harmonic coordinates will be useful also for the physics community. The methods the PI has developed for the free boundary problem of fluids work also for the compressible case and also with vorticity since it uses interior equations and not just equations on the boundary. The methods PI and collaborators are developing to deal with nonlinear equations with variable coefficients will hopefully also be useful to show stability of perturbations of large solutions.
PI的研究涉及数学物理中关于非线性双曲型微分方程组的基本数学问题。其中包括经典场论和连续介质力学中的许多重要方程,例如爱因斯坦的广义相对论方程和欧拉的流体方程。基本问题涉及解的存在、唯一性和稳定性,以及解是否爆炸的问题(例如广义相对论中的黑洞),如果不是,解的长期行为是什么?更具体地说,国际和平研究所主要在两个领域开展工作。其中一个项目是研究爱因斯坦及其相关方程是否一直都有解,或者解是否会爆炸。一个长期目标是研究像黑洞和广义相对论中的大爆炸这样的大解决方案的稳定性。其动机是了解我们宇宙的大尺度结构。物理学家正在建造大型引力波探测器来观测宇宙,这一理论必须与观测一起发展。另一个项目是研究流体动力学和广义相对论中出现的一类问题,特别是证明真空(如海洋表面)中流体表面运动的自由边界问题的存在性和稳定性。一个长期目标是研究气态恒星等天体物理体的长期行为,以及其他流体和固体的界面问题。可以想象,了解两种流体的性质并控制两种流体之间的界面可能具有重要的应用。特别是,在磁流体力学中有一个版本的问题,在建造聚变反应堆时需要控制等离子体。为了解决这些问题,PI和合作者正在开发新的技术,这些技术也可以用来研究许多其他问题。特别是,他们正在使用几何方法和频率分解方法相结合来研究双曲型微分方程。PI和合作者对爱因斯坦方程及其推广和改进的极大简化的存在证明将产生重大影响。此外,他们在调和坐标下证明的详细的渐近行为也将对物理界有用。PI为流体的自由边界问题开发的方法也适用于可压缩情况,也适用于涡度,因为它使用内部方程,而不仅仅是边界上的方程。PI和合作者正在发展的处理变系数非线性方程的方法也有望有助于证明大解的摄动的稳定性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans Lindblad其他文献
A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro
瑞典克朗、美元和欧元的同步模型
- DOI:
10.2139/ssrn.981114 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Peter Sellin;Hans Lindblad - 通讯作者:
Hans Lindblad
Scattering from infinity for semilinear wave equations satisfying the null condition or the weak null condition
满足零值条件或弱零值条件的半线性波动方程的无穷远散射
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0.7
- 作者:
Hans Lindblad;Volker Schlue - 通讯作者:
Volker Schlue
Blow-up for solutions of □u=|u|P with small initial data
- DOI:
10.1080/03605309908820708 - 发表时间:
1990 - 期刊:
- 影响因子:1.9
- 作者:
Hans Lindblad - 通讯作者:
Hans Lindblad
Global solutions of nonlinear wave equations
- DOI:
10.1002/cpa.3160450902 - 发表时间:
1992-10 - 期刊:
- 影响因子:3
- 作者:
Hans Lindblad - 通讯作者:
Hans Lindblad
A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time
- DOI:
10.1090/s0002-9939-03-07246-0 - 发表时间:
2002-10 - 期刊:
- 影响因子:0
- 作者:
Hans Lindblad - 通讯作者:
Hans Lindblad
Hans Lindblad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans Lindblad', 18)}}的其他基金
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
2247637 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1101721 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1249160 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1237212 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0801120 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0500899 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0200226 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
非线性波动方程组解的存在性与扩展
- 批准号:
9970623 - 财政年份:1999
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Sciences: Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
数学科学:非线性波动方程组解的存在性和放大
- 批准号:
9623207 - 财政年份:1996
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Sciences: Existence and Blow-up of Solutions of Nonlinear Wave Equations
数学科学:非线性波动方程解的存在性与爆炸
- 批准号:
9306797 - 财政年份:1993
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
2247637 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
- 批准号:
2306258 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1101721 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1249160 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1237212 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Studies on the sufficient conditions for the global existence of solutions to the exterior problems for nonlinear hyperbolic equations
非线性双曲方程外问题解全局存在的充分条件研究
- 批准号:
20540211 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0801120 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0500899 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Existence and Stability of Non-classical Weak Solutions to Hyperbolic Conservation Laws
双曲守恒定律非经典弱解的存在性和稳定性
- 批准号:
15540221 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0200226 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant