Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics

数学物理中双曲微分方程解的存在性

基本信息

  • 批准号:
    1249160
  • 负责人:
  • 金额:
    $ 4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

The PI's research concerns basic mathematical questions about systems of nonlinear hyperbolic differential equations in mathematical physics. These include many important equations in classical field theory and continuum mechanics; e.g. Einstein's equations of general relativity and Euler's equations of fluids. The basic questions are: (i) Do we have existence and uniqueness of solutions, and continuous dependence on data, in a certain class? (ii) Can solutions blow up? (e.g. black holes in general relativity) (iii) What is the long time behavior of solutions? More specifically, the PI is mainly working in two areas. One project is to study the problem of existence of global solutions of Einstein's equations and of other related equations. The first goal is to simplify, generalize and refine the existence results for Einstein's equations. A long term goal is to study the stability of large solutions like black holes in general relativity. This is related to one of the main problem is mathematical relativity, the cosmic censorship conjectures of Penrose. The question of stability or blowup of large solutions is also the main question now in nonlinear wave equations. Another project is studying a class of problems that occur in fluid dynamics and general relativity, in particular, proving the well-posedness for the free boundary problem of the motion of the surface of a fluid in vacuum. The first goal in this area is to prove local existence. A long term goal is to study the long time behavior of astrophysical bodies such as gaseous stars as well as other interface problems of fluids and solids. To solve these problems the PI and collaborators are developing new techniques that could be useful for studying many other problems as well. In particular, they are using geometric methods to study hyperbolic differential equations.The PI and collaborators greatly simplified the existence proof for Einstein's equations and its generalizations and refinements will have a large impact. It makes it much easier for graduate students to get in to mathematical relativity. Moreover, the detailed asymptotic behavior they prove in harmonic coordinates will be useful for the physics community. The physicists are building large gravitational wave detectors to observe the Universe. In order to know what to look for there is a large effort in doing numerical calculations for Einstein's equations and the only successful attempts have been in harmonic coordinates. It is also conceivable that understanding the properties of and controlling the interface between two fluids could have industrial applications. In particular there is a version of the problem for plasma physics in magneto-hydrodynamics and controlling the plasma is needed for constructing fusion reactors.
PI的研究涉及数学物理中关于非线性双曲型微分方程系统的基本数学问题。这些包括经典场论和连续介质力学中的许多重要方程;例如爱因斯坦的广义相对论方程和欧拉的流体方程。基本问题是:(i)我们是否有解的存在性和唯一性,以及对数据的连续依赖性,在一定的类?(ii)解决方案会爆炸吗?(e.g.(3)解的长时间行为是什么?更具体地说,PI主要在两个领域开展工作。一个项目是研究爱因斯坦方程和其他相关方程的整体解的存在性问题。第一个目标是简化、推广和改进爱因斯坦方程的存在性结果。一个长期的目标是研究像广义相对论中的黑洞这样的大解的稳定性。这与数学相对论的主要问题之一,彭罗斯的宇宙审查理论有关。大解的稳定性或爆破问题也是非线性波动方程的主要问题。另一个项目是研究流体动力学和广义相对论中出现的一类问题,特别是证明真空中流体表面运动的自由边界问题的适定性。这个领域的第一个目标是证明局部存在。一个长期目标是研究天体的长期行为,如气态恒星以及其他流体和固体的界面问题。为了解决这些问题,PI和合作者正在开发新的技术,这些技术也可以用于研究许多其他问题。特别是他们正在用几何方法研究双曲型微分方程,PI和合作者大大简化了爱因斯坦方程的存在性证明,其推广和细化将产生很大的影响。这使得研究生更容易进入数学相对论。此外,他们在调和坐标中证明的详细渐近行为将对物理界有用。物理学家正在建造大型引力波探测器来观测宇宙。为了知道要寻找什么,有很大的努力在做数值计算爱因斯坦的方程和唯一成功的尝试一直在调和坐标。也可以想象,理解两种流体之间的界面的性质和控制可以具有工业应用。特别是有一个版本的问题,等离子体物理在磁流体力学和控制等离子体是需要建设聚变反应堆。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hans Lindblad其他文献

A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro
瑞典克朗、美元和欧元的同步模型
  • DOI:
    10.2139/ssrn.981114
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Sellin;Hans Lindblad
  • 通讯作者:
    Hans Lindblad
Scattering from infinity for semilinear wave equations satisfying the null condition or the weak null condition
满足零值条件或弱零值条件的半线性波动方程的无穷远散射
Blow-up for solutions of □u=|u|P with small initial data
Global solutions of nonlinear wave equations
A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time
  • DOI:
    10.1090/s0002-9939-03-07246-0
  • 发表时间:
    2002-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hans Lindblad
  • 通讯作者:
    Hans Lindblad

Hans Lindblad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hans Lindblad', 18)}}的其他基金

Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    2247637
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1500925
  • 财政年份:
    2015
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1101721
  • 财政年份:
    2011
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1237212
  • 财政年份:
    2011
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0801120
  • 财政年份:
    2008
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0500899
  • 财政年份:
    2005
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0200226
  • 财政年份:
    2002
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
非线性波动方程组解的存在性与扩展
  • 批准号:
    9970623
  • 财政年份:
    1999
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
数学科学:非线性波动方程组解的存在性和放大
  • 批准号:
    9623207
  • 财政年份:
    1996
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Existence and Blow-up of Solutions of Nonlinear Wave Equations
数学科学:非线性波动方程解的存在性与爆炸
  • 批准号:
    9306797
  • 财政年份:
    1993
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant

相似海外基金

Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    2247637
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
  • 批准号:
    2306258
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1500925
  • 财政年份:
    2015
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1101721
  • 财政年份:
    2011
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    1237212
  • 财政年份:
    2011
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Studies on the sufficient conditions for the global existence of solutions to the exterior problems for nonlinear hyperbolic equations
非线性双曲方程外问题解全局存在的充分条件研究
  • 批准号:
    20540211
  • 财政年份:
    2008
  • 资助金额:
    $ 4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0801120
  • 财政年份:
    2008
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0500899
  • 财政年份:
    2005
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Existence and Stability of Non-classical Weak Solutions to Hyperbolic Conservation Laws
双曲守恒定律非经典弱解的存在性和稳定性
  • 批准号:
    15540221
  • 财政年份:
    2003
  • 资助金额:
    $ 4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
  • 批准号:
    0200226
  • 财政年份:
    2002
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了