Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
非线性波动方程组解的存在性与扩展
基本信息
- 批准号:9970623
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-01 至 2002-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lindblad's research concerns basic mathematical questions for systems of nonlinear wave equations which include several important equations in physics, for instance, in classical field theory and continuum mechanics as well as in classical physics, e.g. Einstein's equations, the Yang-Mills equation and the equation of nonlinear elasticity. These basic questions are:(i) Do we have local existence and uniqueness of solutions in a certain class? (ii) Do we have blow-up of solutions? (e.g. black holes in general relativity)(iii) What is the long time behavior of solutions?More specifically, Lindblad is working on two projects. One with Demetri Christodoulou on proving the well-posedness for a class of problems that occurr in fluid dynamics and general relativity, in particular proving the well-posedness for the free boundary problem of the surface of a fluid in vacuum. Another project is to study how regular initial data needed to ensure the existence of a local solution to nonlinear wave equations, in particular constructing counterexamples to local existence. These two problems are related to the question of whether the fundamental equations in physics have global solutions. Solution to these questions could have important consequences. For instance, it is conceivable that one could use the knowledge obtained from the solutions of Einstein's equations to permit the use of gravitational waves to observe the Universe. To solve these problems Linblad and his collaborators are developing completely new techniques that could be useful for studying many other problems as well, e.g. the properties of the interface between two fluids. Such a result would have industrial applications.
林德布拉德的研究涉及基本的数学问题系统的非线性波动方程,其中包括几个重要的方程在物理学,例如,在经典场论和连续介质力学以及在经典物理学,例如爱因斯坦方程,杨米尔斯方程和方程的非线性弹性。这些基本问题是:(i)解的局部存在唯一性 在某个班级?(ii)我们有解的爆破吗? (e.g.(3)解的长时间行为是什么?更具体地说,Lindblad正在进行两个项目。 一个是与Demetri Christodoulou一起证明了流体动力学和广义相对论中一类问题的适定性,特别是证明了真空中流体表面自由边界问题的适定性。另一个项目是研究如何需要规则的初始数据来确保非线性波动方程局部解的存在性,特别是构造局部存在性的反例。这两个问题都与物理学基本方程是否具有整体解的问题有关。这些问题的解决可能会产生重要的后果。例如,可以想象,人们可以使用从爱因斯坦方程的解中获得的知识来允许使用引力波来观察宇宙。为了解决这些问题,Linblad和他的合作者正在开发全新的技术,这些技术也可以用于研究许多其他问题,例如两种流体之间的界面特性。这样的结果将具有工业应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans Lindblad其他文献
A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro
瑞典克朗、美元和欧元的同步模型
- DOI:
10.2139/ssrn.981114 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Peter Sellin;Hans Lindblad - 通讯作者:
Hans Lindblad
Scattering from infinity for semilinear wave equations satisfying the null condition or the weak null condition
满足零值条件或弱零值条件的半线性波动方程的无穷远散射
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0.7
- 作者:
Hans Lindblad;Volker Schlue - 通讯作者:
Volker Schlue
Blow-up for solutions of □u=|u|P with small initial data
- DOI:
10.1080/03605309908820708 - 发表时间:
1990 - 期刊:
- 影响因子:1.9
- 作者:
Hans Lindblad - 通讯作者:
Hans Lindblad
Global solutions of nonlinear wave equations
- DOI:
10.1002/cpa.3160450902 - 发表时间:
1992-10 - 期刊:
- 影响因子:3
- 作者:
Hans Lindblad - 通讯作者:
Hans Lindblad
A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time
- DOI:
10.1090/s0002-9939-03-07246-0 - 发表时间:
2002-10 - 期刊:
- 影响因子:0
- 作者:
Hans Lindblad - 通讯作者:
Hans Lindblad
Hans Lindblad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans Lindblad', 18)}}的其他基金
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
2247637 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1500925 - 财政年份:2015
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1101721 - 财政年份:2011
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1249160 - 财政年份:2011
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
1237212 - 财政年份:2011
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0801120 - 财政年份:2008
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0500899 - 财政年份:2005
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Existence of Solutions to Hyperbolic Differential Equations in Mathematical Physics
数学物理中双曲微分方程解的存在性
- 批准号:
0200226 - 财政年份:2002
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
数学科学:非线性波动方程组解的存在性和放大
- 批准号:
9623207 - 财政年份:1996
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Existence and Blow-up of Solutions of Nonlinear Wave Equations
数学科学:非线性波动方程解的存在性与爆炸
- 批准号:
9306797 - 财政年份:1993
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似国自然基金
解在边界blow-up的非线性椭圆型问题
- 批准号:10671169
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:面上项目
非线性抛物型方程的blow-up现象
- 批准号:10601012
- 批准年份:2006
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Analysis of blow-up phenomena for nonlinear parabolic equations
非线性抛物方程的爆炸现象分析
- 批准号:
23K13005 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Super critical blow up for NLS type models
NLS型模型的超临界爆破
- 批准号:
2597263 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Studentship
New development of the blow-up theorem for nonlinear wave equations
非线性波动方程爆炸定理的新发展
- 批准号:
20K14351 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Well-posedness and blow-up criterion for the magnetohydrodynamics system
磁流体动力学系统的适定性和爆炸准则
- 批准号:
19J11320 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A numerical study for complex blow-up solutions of nonlinear evolution equations
非线性演化方程复杂爆炸解的数值研究
- 批准号:
18K03427 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli spaces and blow-up constructions for stacks
堆栈的模数空间和爆炸结构
- 批准号:
2099935 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Studentship
Regularity, Blow Up and Mixing in Fluids
流体中的规律性、膨胀和混合
- 批准号:
1848790 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Research for decay and blow-up of solutions to nonlinear Schrodinger equations
非线性薛定谔方程解的衰减和爆炸研究
- 批准号:
17K05305 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity, Blow Up and Mixing in Fluids
流体中的规律性、膨胀和混合
- 批准号:
1712294 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
On blow-up solutions for system of nonlinear drift-diffusion equations with nonlocal interactions
具有非局部相互作用的非线性漂移扩散方程组的爆炸解
- 批准号:
16K05219 - 财政年份:2016
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)