Toward Quantum Semiconductor Nanocavities
迈向量子半导体纳米腔
基本信息
- 批准号:0200376
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-05-01 至 2005-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to fabricate high-Q (~10,000), small-volume (cubic wavelength or smaller) 3D semiconductor nanocavities. Single-oxide-aperture microcavities have yielded Q = 2,000 with a diameter of 2 microns. The Q will be increased by fabricating a nanocavity with multiple aluminum-oxide apertures (Dennis Deppe, U. Texas - Austin), thus combining the advantages of etched pillars and oxide apertures, or by using a very small volume photonic-crystal nanocavity (Axel Scherer, Caltech). The Q will be measured by detecting the linewidth of photoluminescence of the quantum dots grown into the center of the nanocavity spacer. Professor Deppe, who has much experience with the growth of InGaAs quantum dots, will grow the material for both types of nanocavities. During this grant the emphasis will be shifted from interface-fluctuation dots at 750 nm to the more strongly confined self-assembled quantum dots of InGaAs at 1300 nm. 1.3 mm is an attractive wavelength not only because of its obvious importance for optical communications but also because the ratio of vacuum Rabi splitting to photon escape rate from the cavity is more than twice as large there. The longer wavelength increases the feature size of a wavelength-in-the-material cavity, making it easier to fabricate. The stronger confinement promises higher temperature operation. Finally instruments for characterizing 1.3-mm samples have been acquired by the PI.Minimum-volume, high-Q nanocavities are the natural nanotechnological limit for the shrinking size of light-emitting diodes and VCSEL's. Such structures are also of current interest to quantum information processing as sources of single photons on demand or for quantum entanglement. The Q/volume ratio can be lower for a useful single-photon turnstile than for strong coupling, so the values of Q and volume obtained will determine the emphasis upon single-photon source versus strong coupling. Radiative coupling between a single quantum dot and a nanocavity mode would be seen as a narrowing of the cavity linewidth as the cavity mode is temperature scanned through the dot's lowest energy transition in a dewar with very small temperature dependence of the sample position. Strong coupling would result in double-peaked transmission or luminescence, and absorption of a single photon would already change the absorption spectrum for the next probe photon.
该项目的目标是制造高Q(~ 10,000),小体积(立方波长或更小)的3D半导体纳米腔。 单氧化物孔微腔产生了Q = 2,000,直径为2微米。 通过制造具有多个氧化铝孔的纳米腔将增加Q(Dennis Deppe,U. Texas - Austin),从而结合了蚀刻柱和氧化物孔的优点,或者通过使用非常小体积的光子晶体纳米腔(阿克塞尔谢勒,Caltech)。 将通过检测生长到纳米腔间隔物中心的量子点的光致发光的线宽来测量Q。 Deppe教授在InGaAs量子点的生长方面拥有丰富的经验,他将为这两种类型的纳米腔生长材料。 在此期间,重点将从750 nm的界面波动点转移到1300 nm的InGaAs更强限制的自组装量子点。 1.3毫米是一个有吸引力的波长,这不仅是因为它对于光通信的明显重要性,而且还因为真空拉比分裂与光子从腔中逃逸速率的比率是那里的两倍以上。 较长的波长增加了材料中波长腔的特征尺寸,使其更容易制造。 更强的限制保证了更高温度的操作。 最后,PI获得了表征1.3 mm样品的仪器。最小体积,高Q值纳米腔是缩小发光二极管和VCSEL尺寸的自然纳米技术限制。 此类结构目前也引起了量子信息处理的兴趣,作为按需单光子源或量子纠缠源。 对于有用的单光子旋转栅门,Q/体积比可以比强耦合低,因此获得的Q和体积的值将确定对单光子源与强耦合的强调。 单个量子点和纳米腔模式之间的辐射耦合将被视为腔线宽的变窄,因为腔模式在杜瓦瓶中通过点的最低能量跃迁进行温度扫描,样品位置的温度依赖性非常小。强耦合将导致双峰透射或发光,并且单个光子的吸收将已经改变下一个探测光子的吸收光谱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyatt Gibbs其他文献
Hyatt Gibbs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyatt Gibbs', 18)}}的其他基金
Nonlinear Photonic Crystal Nanocavities and Waveguides
非线性光子晶体纳米腔和波导
- 批准号:
0757975 - 财政年份:2008
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Nonlinear Photonic Crystal Nanocavities and Waveguides
非线性光子晶体纳米腔和波导
- 批准号:
0501402 - 财政年份:2005
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
TOWARD QUANTUM SEMICONDUCTOR MICROCAVITIES
迈向量子半导体微腔
- 批准号:
9970106 - 财政年份:1999
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Expansion of MBE Machine to Include Dopants and Acquisition of Dopant Characterization Equipment
MBE 机器的扩展包括掺杂剂和采购掺杂剂表征设备
- 批准号:
8907989 - 财政年份:1989
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Support of 1987 Gordon Research Conference on Nonlinear Optics and Lasers, July 26 - July 31, 1987; Wolfeboro, New Hampshire
支持 1987 年戈登非线性光学和激光器研究会议,1987 年 7 月 26 日至 7 月 31 日;
- 批准号:
8714030 - 财政年份:1987
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
US France Cooperative Research: Propagation of Laser Beams Through Intensity-Dependent Media
美法合作研究:激光束通过强度相关介质的传播
- 批准号:
8612339 - 财政年份:1987
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Single-atom quantum phenomena in nanoscale semiconductor devices
纳米级半导体器件中的单原子量子现象
- 批准号:
EP/V048333/2 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Research Grant
Scalable semiconductor quantum processor with flip chip bonding technology
采用倒装芯片接合技术的可扩展半导体量子处理器
- 批准号:
IM230100396 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Mid-Career Industry Fellowships
NSF-NSERC: Building a two-qubit controlled phase gate using laterally coupled semiconductor quantum dots
NSF-NSERC:使用横向耦合半导体量子点构建两个量子位控制的相位门
- 批准号:
2317047 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Open fiber-based cavity for spectroscopix experiments in semiconductor quantum optics
用于半导体量子光学光谱实验的开放式光纤腔
- 批准号:
517518181 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Major Research Instrumentation
Nanoscale quantum physics and quantum information processing with semiconductor quantum dots
纳米量子物理与半导体量子点的量子信息处理
- 批准号:
2891758 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Studentship
Development of fundamental technologies for III-V semiconductor membrane photonic integrated circuits using quantum well intermixing
利用量子阱混合开发III-V族半导体膜光子集成电路基础技术
- 批准号:
23H00172 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Quantum dot formation by electron beam irradiation and application to yellow semiconductor laser
电子束照射形成量子点及其在黄色半导体激光器中的应用
- 批准号:
23H01455 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Creation of innovative quantum repeater technology for semiconductor spin qubits based on photon-spin quantum state conversion
创建基于光子自旋量子态转换的半导体自旋量子位创新量子中继器技术
- 批准号:
23H05458 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Semiconductor-based topological superconducting spintronics: Creation of next-generation quantum information infrastructure
基于半导体的拓扑超导自旋电子学:创建下一代量子信息基础设施
- 批准号:
23K17324 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Exploring spin coherence engineering in group IV semiconductor quantum structures
探索 IV 族半导体量子结构中的自旋相干工程
- 批准号:
23H05455 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (S)