Equations of Monge-Ampere Type and Fully Nonlinear Equations
Monge-Ampere型方程和完全非线性方程
基本信息
- 批准号:0201599
- 负责人:
- 金额:$ 6.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-0201599Principal Investigator: Qingbo Huang, Wright State UniversityABSTRACTThis mathematical research focuses on equations of Monge-Ampere type and fully nonlinear elliptic equations with geometric or physical motivation. The first part of this projectis devoted to several equations of Monge-Ampere type. In particular, we propose to study regularity of solutions and other quantitative properties such as the large time behavior of solutions and characterization of associated nonlinear semigroups for several parabolic Monge-Ampere equations arising in the deformation of surfaces, to develop regularity theory forweak solutions of degenerate Monge-Ampere equations and study its interaction with Monge-Kantorovich optimal mass transfer problem stemming from economics and other areas of science,and to consider an equation arising in geometric optics for the synthesis of reflector antennas.The second part of the project is concerned with fully nonlinear elliptic equationswithout concavity condition, regularity theory of weak solutions of Hessian equations, and the infinity Laplacian equation as the Euler equation of minimizing Lipschitz extension.This research is in the area of nonlinear partial differential equations. These equations play a crucial role in the application of mathematics to real world. Most phenomena in nature and society, such as heat transfer, flows in porous media, construction of reflectors, optimal disposition of air masses, are described by nonlinear partial differential equations.Study of these equations will greatly help understand the nature of these phenomena and develop practical, fast, and reliable numerical algorithms. One of the proposed problems is related to Monge-Kantorovich optimal mass transfer problem appearing in economic, physics, and meteorology. Another problem arises from the engineering problem ofconstruction of reflector antennas. The parabolic Monge-Ampere equations are motivated from differential geometry and appear in the model of worn stones. The proposed projecthas a strong connection with real harmonic analysis and differential geometry. We expect that this research will stimulate more interplay among these areas.
建议:DMS-0201599主要研究员:黄庆波,莱特州立大学[摘要]本文主要研究具有几何或物理动机的Monge-Ampere型方程和完全非线性椭圆型方程。这个投影的第一部分致力于几个Monge-Ampere型方程。特别地,我们建议研究几个由表面变形引起的抛物型Monge-Ampere方程的解的正则性和其它定量性质,如解的大时间行为和相关的非线性半群的特征,发展退化的Monge-Ampere方程的弱解的正则性理论,并研究它与源于经济学和其他科学领域的Monge-Kantorovich最优传质问题的相互作用,以及考虑几何光学中出现的用于反射面天线综合的方程。项目的第二部分涉及无凹条件的完全非线性椭圆型方程,Hessian方程弱解的正则性理论,而无穷拉普拉斯方程作为极小化Lipschitz扩张的欧拉方程。这些方程在将数学应用到现实世界中起着至关重要的作用。自然界和社会中的大多数现象,如热传递、多孔介质中的流动、反射体的构造、空气质量的优化配置等,都是用非线性偏微分方程组来描述的,研究这些方程将有助于理解这些现象的本质,并开发实用、快速和可靠的数值算法。提出的问题之一与经济学、物理学和气象学中出现的Monge-Kantorovich最优传质问题有关。另一个问题来自反射面天线的建造工程问题。抛物型Monge-Ampere方程从微分几何出发,出现在磨石模型中。所提出的方案与实调和分析和微分几何有很强的联系。我们预计,这项研究将促进这些领域之间更多的相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qingbo Huang其他文献
Integration of Globalization and Localization of TNCs and corresponding strategy of China
跨国公司全球化与本土化融合及中国的应对策略
- DOI:
10.2991/emim-16.2016.258 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Qingbo Huang - 通讯作者:
Qingbo Huang
P3H4 promotes renal cell carcinoma progression and suppresses antitumor immunity via regulating GDF15-MMP9-PD-L1 axis
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:5.7
- 作者:
Shuo Tian;Yan Huang;Dong Lai;Hanfeng Wang;Songliang Du;Donglai Shen;Weihao Chen;Yundong Xuan;Yongliang Lu;Huayi Feng;Xiangyi Zhang;Wenlei Zhao;Chenfeng Wang;Tao Wang;Shengpan Wu;Qingbo Huang;Shaoxi Niu;Baojun Wang;Xin Ma;Xu Zhang - 通讯作者:
Xu Zhang
New mouse models for exploring renal tumor extension into the inferior vena cava
用于探索肾肿瘤向腔静脉延伸的新型小鼠模型
- DOI:
10.1038/s42003-025-07757-x - 发表时间:
2025-03-05 - 期刊:
- 影响因子:5.100
- 作者:
Xiubin Li;Huaikang Li;Xupeng Zhao;Jichen Wang;Di Li;Qiuyang Li;Qingjiang Xu;Shengpan Wu;Qiyang Liang;Shangwei Li;Qilong Jiao;Kan Liu;Songliang Du;Cheng Peng;Baojun Wang;Liangyou Gu;Xu Zhang;Qingbo Huang;Xin Ma - 通讯作者:
Xin Ma
MP66-09 DECISION MAKING AND STRATEGIES IN INFERIOR VENA CAVA TRANSECTION DURING ROBOTIC VENOUS THROMBECTOMY: A FEASIBILITY STUDY BASED ON VENOGRAPHY
- DOI:
10.1016/j.juro.2018.02.1881 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Songliang Du;Dan Shen;Qingbo Huang;Cheng Peng;Xu Zhang;Xin Ma - 通讯作者:
Xin Ma
Qingbo Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qingbo Huang', 18)}}的其他基金
Reflector Problem, Equations of Monge-Ampere Type and Fully Nonlinear Equations
反射镜问题、Monge-Ampere型方程和完全非线性方程
- 批准号:
0502045 - 财政年份:2005
- 资助金额:
$ 6.05万 - 项目类别:
Standard Grant
相似国自然基金
复Monge-Ampere型方程的正则性和几何不等式
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
复Monge-Ampere方程解的局部正则性和奇异点集的研究
- 批准号:12001512
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Minkowski问题及其相关Monge-Ampere方程专题研讨班
- 批准号:12026412
- 批准年份:2020
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
Minkwoski问题及其相关Monge-Ampere方程专题研讨班
- 批准号:11926317
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
抛物型Monge-Ampere方程的整体解的存在性与解的局部估计
- 批准号:11901018
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
退化Monge-Ampere 方程边值问题解的正则性研究
- 批准号:11871470
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
仿射技巧与Monge-Ampere型方程
- 批准号:11871352
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
Minkwoski问题及其相关Monge-Ampere方程专题研讨班
- 批准号:11826014
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
Orlicz-Minkowski问题及相关的Monge-Ampere型方程
- 批准号:11871432
- 批准年份:2018
- 资助金额:52.0 万元
- 项目类别:面上项目
具非线性梯度项的Monge-Ampere方程的大解
- 批准号:11571295
- 批准年份:2015
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
- 批准号:
2308856 - 财政年份:2023
- 资助金额:
$ 6.05万 - 项目类别:
Standard Grant
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
- 批准号:
2303508 - 财政年份:2023
- 资助金额:
$ 6.05万 - 项目类别:
Standard Grant
Monge-Ampere type equations and their applications
Monge-Ampere型方程及其应用
- 批准号:
FT220100368 - 财政年份:2023
- 资助金额:
$ 6.05万 - 项目类别:
ARC Future Fellowships
Singularity and regularity for Monge-Ampere type equations
Monge-Ampere 型方程的奇异性和正则性
- 批准号:
DP230100499 - 财政年份:2023
- 资助金额:
$ 6.05万 - 项目类别:
Discovery Projects
Monge-Ampere equations and applications
Monge-Ampere 方程及其应用
- 批准号:
DP200101084 - 财政年份:2020
- 资助金额:
$ 6.05万 - 项目类别:
Discovery Projects
Complex Monge-Ampere Equations and the Calabi Flow
复杂的 Monge-Ampere 方程和卡拉比流
- 批准号:
1914719 - 财政年份:2019
- 资助金额:
$ 6.05万 - 项目类别:
Continuing Grant
CAREER: Conformal Geometry and Monge-Ampere Type Equations
职业:共形几何和 Monge-Ampere 型方程
- 批准号:
1845033 - 财政年份:2019
- 资助金额:
$ 6.05万 - 项目类别:
Continuing Grant
Microlocal Analysis and Monge-Ampere Type Equations in Geometry
几何中的微局域分析和Monge-Ampere型方程
- 批准号:
1906370 - 财政年份:2019
- 资助金额:
$ 6.05万 - 项目类别:
Standard Grant
Regularity Estimates for the Linearized Monge-Ampere and Degenerate Monge-Ampere Equations and Applications in Nonlinear Partial Differential Equations
线性蒙日安培方程和简并蒙日安培方程的正则估计及其在非线性偏微分方程中的应用
- 批准号:
1764248 - 财政年份:2018
- 资助金额:
$ 6.05万 - 项目类别:
Standard Grant
Regularity and Partial Regularity for Monge-Ampere-Type Equations, with Applications to Numerics
Monge-Ampere 型方程的正则性和偏正则性及其在数值中的应用
- 批准号:
1700094 - 财政年份:2017
- 资助金额:
$ 6.05万 - 项目类别:
Continuing Grant