Reflector Problem, Equations of Monge-Ampere Type and Fully Nonlinear Equations

反射镜问题、Monge-Ampere型方程和完全非线性方程

基本信息

  • 批准号:
    0502045
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

Reflector Problem, Equations of Monge-Ampere Type andFully Nonlinear EquationsAbstract of Proposed ResearchPrincipal Investigator: Qingbo HuangThis project is to study a number of topics involving fully nonlinear second order equations and equations of Monge-Ampere type. The first question is the analysis of the equation that governs the design of reflector antennae in optics and electrical engineering. Other questions include some about the regularity and qualitative properties of the degenerate Monge-Ampere equation, the linearized Monge-Ampere equation and the affine maximal surface equation. Much of the proposed research involves the derivation of various estimates on the solutions of these equations. These estimates will then be used to prove existence theorems in various function spaces. This will require the use of methods from geometry, functional and real analysis as well as those of partial differential equations and involves many challenging questions. It is expected that these results could help the development of better algorithms for antenna design and related problems in optics, acoustics and electromagnetic field theory.It should also promote further interaction between engineering and mathematics.
反射器问题、Monge-Ampere型方程和完全非线性方程研究计划摘要主要研究者:黄庆波本项目主要研究完全非线性二阶方程和Monge-Ampere型方程。第一个问题是分析控制光学和电气工程中反射器天线设计的方程。其他问题包括退化Monge-Ampere方程、线性化Monge-Ampere方程和仿射极大曲面方程的正则性和定性性质。许多拟议的研究涉及这些方程的解决方案的各种估计的推导。这些估计将被用来证明存在定理在各种功能空间。这将需要使用的方法,从几何,功能和真实的分析,以及那些偏微分方程,并涉及许多具有挑战性的问题。这些研究成果将有助于天线设计及相关光学、声学和电磁场理论问题的更好算法的发展,并将促进工程与数学的进一步交流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qingbo Huang其他文献

Integration of Globalization and Localization of TNCs and corresponding strategy of China
跨国公司全球化与本土化融合及中国的应对策略
  • DOI:
    10.2991/emim-16.2016.258
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qingbo Huang
  • 通讯作者:
    Qingbo Huang
The near field refractor
近场折射镜
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. E. Gutiérrez;Qingbo Huang
  • 通讯作者:
    Qingbo Huang
P3H4 promotes renal cell carcinoma progression and suppresses antitumor immunity via regulating GDF15-MMP9-PD-L1 axis
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Shuo Tian;Yan Huang;Dong Lai;Hanfeng Wang;Songliang Du;Donglai Shen;Weihao Chen;Yundong Xuan;Yongliang Lu;Huayi Feng;Xiangyi Zhang;Wenlei Zhao;Chenfeng Wang;Tao Wang;Shengpan Wu;Qingbo Huang;Shaoxi Niu;Baojun Wang;Xin Ma;Xu Zhang
  • 通讯作者:
    Xu Zhang
MP66-09 DECISION MAKING AND STRATEGIES IN INFERIOR VENA CAVA TRANSECTION DURING ROBOTIC VENOUS THROMBECTOMY: A FEASIBILITY STUDY BASED ON VENOGRAPHY
  • DOI:
    10.1016/j.juro.2018.02.1881
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Songliang Du;Dan Shen;Qingbo Huang;Cheng Peng;Xu Zhang;Xin Ma
  • 通讯作者:
    Xin Ma
Port shipping connectivity as a new driver of urban exports in the context of dual circulation: Evidence from China
双循环背景下港口航运连通性作为城市出口新驱动力:来自中国的证据
  • DOI:
    10.1016/j.tranpol.2024.10.006
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Yan Li;Xinxin Xia;Qingbo Huang
  • 通讯作者:
    Qingbo Huang

Qingbo Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qingbo Huang', 18)}}的其他基金

Equations of Monge-Ampere Type and Fully Nonlinear Equations
Monge-Ampere型方程和完全非线性方程
  • 批准号:
    0201599
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Mathematical approach to 2 phase problem in unbounded domains and an extension of its approach to the theory of quasilinear parabolic equations
无界域中两相问题的数学方法及其对拟线性抛物型方程理论的扩展
  • 批准号:
    22H01134
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on inverse problem analysis of viscoelastic equations
粘弹性方程反问题分析研究
  • 批准号:
    22K03366
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global solutions to the Cauchy problem for systems of quasi-linear wave equations satisfying the weak null condition
满足弱零条件的拟线性波动方程组柯西问题的全局解
  • 批准号:
    21K03324
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the asymptotic problem appearing in dynamical systems and surface evolution equations by the method of viscosity solutions
粘性解法研究动力系统和表面演化方程的渐近问题
  • 批准号:
    19K03580
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Relationship between initial conditions and global solvability in initial value problem of nonlinear Schrödinger equations
非线性Schr初值问题初始条件与全局可解性的关系
  • 批准号:
    19K14570
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
  • 批准号:
    18K03365
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stationary problem of spatially inhomogeneous reaction diffusion equations
空间非均匀反应扩散方程的平稳问题
  • 批准号:
    18K03358
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research for the Cauchy problem for nonlinear Klein-Gordon equations in homogeneous and isotropic spaces
均匀各向同性空间中非线性Klein-Gordon方程的柯西问题研究
  • 批准号:
    17KK0082
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Mathematical modeling for glucose concentration in blood based on inverse problem analysis of fractional differential equations
基于分数阶微分方程反问题分析的血液葡萄糖浓度数学模型
  • 批准号:
    16K13774
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Uniqueness, non-uniqueness and conditional stability ofsolutions to the Cauchy problem for degenerate ellipticdifferential equations with low-regular coefficients
低正则系数简并椭圆微分方程柯西问题解的唯一性、非唯一性和条件稳定性
  • 批准号:
    278164640
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了