Analytic Properties of L-functions
L 函数的解析性质
基本信息
- 批准号:0209477
- 负责人:
- 金额:$ 35.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator intends primarily to pursue the goal of attacking some of the fundamental problems of the Langlands program by means of analytic methods. He is most interested in the case of base change for holomorphic forms on GL(2) where a non-soluble base change is involved, but the proposed methods should work much more generally. At present the intention is to permit the use of the Riemann Hypothesis (in an appropriate setting) to achieve this goal. A second goal of the proposal is to study some of the fundamental analytic questions on L-functions. This proposal is ultimately concerned with finding methods to solve equations. Since the nineteenth century it has been known that certain equations have formulas (like the quadratic equation and the cubic equation) but that most do not. The cases that interest me are the equations with ordinary integer coefficients. It has become apparent in the last fifty years that there should be a completely different way of studying these general equations by using methods from analysis (i.e. derived from calculus) rather than by using methods from algebra. The idea is to describe and prove many properties of the solutions (which still exist even though there may be no formulas for them).
主要研究者的主要目的是通过分析方法来解决朗兰兹纲领的一些基本问题。他最感兴趣的是GL(2)上全纯形式的基变化的情况,其中涉及不可解的基变化,但所提出的方法应该更普遍地工作。目前的意图是允许使用黎曼假设(在适当的设置),以实现这一目标。该提案的第二个目标是研究L-函数的一些基本分析问题。 这个建议最终涉及到寻找解方程的方法。自世纪以来,人们已经知道某些方程有公式(如二次方程和三次方程),但大多数方程没有公式。我感兴趣的情况是具有普通整数系数的方程。在过去的50年里,人们已经清楚地认识到,应该用一种完全不同的方法来研究这些一般方程,即用分析的方法(即从微积分中导出的方法),而不是用代数的方法。其思想是描述和证明解的许多性质(即使没有公式,这些性质仍然存在)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Wiles其他文献
Ordinary representations and modular forms.
普通表示和模块化形式。
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:11.1
- 作者:
C. Skinner;Andrew Wiles - 通讯作者:
Andrew Wiles
Andrew Wiles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Wiles', 18)}}的其他基金
Modular Forms and Galois Representations
模形式和伽罗瓦表示
- 批准号:
9711005 - 财政年份:1997
- 资助金额:
$ 35.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Science: Modular forms, Elliptic curves and galois reprentations"
数学科学:数学科学:模形式、椭圆曲线和伽罗瓦表示"
- 批准号:
9224925 - 财政年份:1993
- 资助金额:
$ 35.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: "L-Adic Representations and Iwasawa Theory"
数学科学:“L-Adic表示和岩泽理论”
- 批准号:
9002468 - 财政年份:1990
- 资助金额:
$ 35.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unramified Abelian Extensions of Number Fields
数学科学:数域的无分支阿贝尔扩张
- 批准号:
8418449 - 财政年份:1985
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
Mathematical Sciences: Unramified Abelian Extension of Number Fields
数学科学:数域的无分支阿贝尔扩展
- 批准号:
8300908 - 财政年份:1983
- 资助金额:
$ 35.06万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unramified Abelian Extensions of Number Fields
数学科学:数域的无分支阿贝尔扩张
- 批准号:
8217647 - 财政年份:1982
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
相似海外基金
Analytic properties of the Dirichlet L-functions and the distribution of primes
Dirichlet L 函数的解析性质和素数分布
- 批准号:
16K17574 - 财政年份:2016
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analytic properties of zeta functions
zeta 函数的解析性质
- 批准号:
24740029 - 财政年份:2012
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The origin of analytic properties of zeta functions on the domain where they are divergent
Zeta 函数在其发散域上的分析性质的起源
- 批准号:
22740019 - 财政年份:2010
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analytic properties for several types of zeta-functions
几种 zeta 函数的解析性质
- 批准号:
21740024 - 财政年份:2009
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analytic properties of arithmetic zeta functions and geometric symmetry
算术 zeta 函数的解析性质和几何对称性
- 批准号:
21740004 - 财政年份:2009
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analytic structures and arithmetic properties of multiple zeta-functions
多个 zeta 函数的解析结构和算术性质
- 批准号:
20340003 - 财政年份:2008
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analytic properties of dynamical zeta functions and stable ergodicity
动力学 zeta 函数的解析性质和稳定遍历性
- 批准号:
19840038 - 财政年份:2007
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Young Scientists (Start-up)
Research of arithmetical properties for analytic functions satisfying a system of linear functional equations
满足线性函数方程组的解析函数的算术性质研究
- 批准号:
18540012 - 财政年份:2006
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Beneath on analytic properties ofvarious zeta-functions
下面是各种 zeta 函数的解析性质
- 批准号:
17540022 - 财政年份:2005
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Researches on Properties of the Spaces of Analytic Functions and Their Operators
解析函数及其算子空间性质的研究
- 批准号:
15540181 - 财政年份:2003
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)