GOALI: Creep and Microstructural Coarsening of Lead-Free Solders in Micro-Electronic Packaging Applications

GOALI:微电子封装应用中无铅焊料的蠕变和微观结构粗化

基本信息

  • 批准号:
    0209464
  • 负责人:
  • 金额:
    $ 25.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Interagency Agreement
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-15 至 2006-07-31
  • 项目状态:
    已结题

项目摘要

This project, which is supported by the Division of Materials Research and the Office of Multidisciplinary Activities in the Directorate for Mathematical and Physical Sciences, aims to investigate the life limiting thermal cycling, creep and microstructural instability of lead-free solders for electronic packaging with special reference to flip-chip (FC) and ball-grid array (BGA) packages. The project is a highly leveraged collaborative program of research between Naval Postgraduate School (NPS) and Intel (Chandler, AZ). The objectives of this GOALI proposal are to (1) devise a methodology for rapid creep characterization of FC and BGA solder balls with minimal sample preparation, based on the impression creep approach; (2) develop a unified creep model incorporating the effect of phase coarsening applicable to lead-free solders of 2 representative microstructural types; (3) generate comprehensive creep and coarsening kinetics data for solder joints of 2 selected lead-free alloys belonging to these microstructural types; and (4) provide fundamental mechanistic insight into the roles of microstructural scale and compositional artifacts (associated with attaching tiny volumes of solder to other materials) on the evolution of creep behavior during thermo-mechanical cycling (TMC). A major goal of the project is to directly measure the creep response of individual solder balls joined to a substrate, in lieu of the standard tests on bump arrays and bulk materials. The study will lead to an understanding of the fundamental phenomenological dependence of creep kinetics on the (a) microstructural scale, and (b) process-history dependent compositional variations of the joints. These goals are achieved by a systematic variation of material and process parameters. The work constitutes developing closed-form unified creep laws including microstructural coarsening effects, which may be incorporated into finite element models for solder-joint reliability assessment. The impression creep of single solder bumps is a challenging scientific effort and the successful completion of the project will have direct impact on semiconductor electronic packaging technology in predictive engineering processes. The work is multidisciplinary with impact on experimental aspects in materials sciences and mechanics, as well as predictive modeling efforts involving microstructural as well as finite element aspects. The project takes advantage of the expertise and experimental facilities available at the academic institution (NPS) as well as industrial counterpart (Intel/Chandler). In addition, collaboration with experts at Motorola is pursued. The unique aspect of this GOALI program includes the time spent by the Intel PI at the academic institution. The personnel (PI, post-doctoral fellow and graduate students) from the academic institute (NPS) plan to perform studies at the industrial laboratory (Intel/Chandler) while Intel supports the post-doctoral fellow during that time. The educational and technological impacts of the program are rated superior.The program is a close collaboration between NPS and Intel with secondary interactions with personnel at Motorola with implications to developing a thorough understanding of the life-limiting aspects of lead-free solders in microelectronic packaging. The project has practical importance to the microelectronic industry while addresses basic scientific issues. The study will (a) develop testing methodologies and models for improving current reliability engineering practices, and (b) generate kinetics data for two lead-free solders of strategic importance to the industry. The collaboration of the university personnel with industrial counterparts provides a significant opportunity for students.
该项目得到了材料研究司和数学与物理科学理事会多学科活动办公室的支持,旨在研究电子封装用无铅焊料的寿命限制热循环、蠕变和微观结构不稳定性,特别是倒装芯片(FC)和球栅阵列(BGA)封装。该项目是海军研究生院(MIT)和英特尔(钱德勒,亚利桑那州)之间的一个高度杠杆化的合作研究计划。本GOALI提案的目标是:(1)基于压痕蠕变方法,设计一种用于FC和BGA焊料球的快速蠕变表征的方法,只需最少的样品制备;(2)开发一种统一的蠕变模型,该模型包含适用于两种代表性微观结构类型的无铅焊料的相粗化效应;(3)获得了属于这些微观组织类型的两种无铅合金焊点的蠕变和粗化动力学数据;和(4)提供微观结构规模和成分人工制品的作用的基本机制的见解(与将微小体积的焊料附着到其他材料相关联)对热机械循环(TMC)期间蠕变行为的演变的影响。该项目的一个主要目标是直接测量连接到基板上的单个焊球的蠕变响应,以代替对凸块阵列和散装材料的标准测试。这项研究将导致对蠕变动力学的基本现象学依赖的理解(a)微观结构尺度,和(B)工艺历史依赖的组成变化的关节。这些目标是通过材料和工艺参数的系统变化来实现的。这项工作包括开发封闭形式的统一蠕变规律,包括微观结构粗化的影响,这可能会被纳入到焊点可靠性评估的有限元模型。单个焊料凸点的压痕蠕变是一项具有挑战性的科学工作,该项目的成功完成将对预测工程过程中的半导体电子封装技术产生直接影响。这项工作是多学科的,对材料科学和力学的实验方面有影响,以及涉及微观结构和有限元方面的预测建模工作。该项目利用了学术机构(英特尔)和工业界对应机构(英特尔/钱德勒)现有的专门知识和实验设施。此外,还与摩托罗拉的专家进行了合作。该GOALI计划的独特之处包括英特尔PI在学术机构花费的时间。 学术研究所的人员(PI、博士后研究员和研究生)计划在工业实验室(英特尔/钱德勒)进行研究,同时英特尔在此期间支持博士后研究员。该计划的教育和技术影响被评为上级。该计划是英特尔和英特尔之间的密切合作,并与摩托罗拉的人员进行了二次互动,以深入了解微电子封装中无铅焊料的寿命限制方面。该项目在解决基本科学问题的同时,对微电子工业具有实际重要性。该研究将(a)开发测试方法和模型,以改善当前的可靠性工程实践,(B)生成两个无铅焊料的动力学数据的战略重要性,以行业。大学人员与工业同行的合作为学生提供了重要的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Indranath Dutta其他文献

Microstructurally Adaptive Model for Evolution of Creep Due to Aging in SnAgCu Solder Alloys
  • DOI:
    10.1007/s11664-024-11701-w
  • 发表时间:
    2025-01-06
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Sri Chaitra Chavali;Sai Sanjit Ganti;Yuvraj Singh;Ganesh Subbarayan;Indranath Dutta;Mysore Dayananda
  • 通讯作者:
    Mysore Dayananda
Deformation Behavior of Sn-3.8Ag-0.7Cu Solder at Intermediate Strain Rates: Effect of Microstructure and Test Conditions
  • DOI:
    10.1007/s11664-007-0316-0
  • 发表时间:
    2007-10-30
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Xin Long;Indranath Dutta;Vijay Sarihan;Darrel R. Frear
  • 通讯作者:
    Darrel R. Frear
Creep in multi-component materials systems
  • DOI:
    10.1007/s11837-003-0186-8
  • 发表时间:
    2003-01-01
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Indranath Dutta
  • 通讯作者:
    Indranath Dutta
Damage Mechanisms in Through-Silicon Vias Due to Thermal Exposure and Electromigration
  • DOI:
    10.1007/s11664-023-10845-5
  • 发表时间:
    2023-12-13
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Tae-kyu Lee;Hanry Yang;Indranath Dutta
  • 通讯作者:
    Indranath Dutta

Indranath Dutta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Indranath Dutta', 18)}}的其他基金

Collaborative Research: Mechanisms and Processing Strategies for Sn Whisker Mitigation
合作研究:锡晶须缓解机制和加工策略
  • 批准号:
    1335491
  • 财政年份:
    2013
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Standard Grant
Influence of Electric Field and Stress on Diffusional Sliding at Hetero-Interfaces
电场和应力对异质界面扩散滑动的影响
  • 批准号:
    1309843
  • 财政年份:
    2013
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Electromagnetic Pulse Cutting of Metallic Components
合作研究:金属部件的电磁脉冲切割
  • 批准号:
    1232458
  • 财政年份:
    2012
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Standard Grant
A Breakthrough Nanolithography Technique Using 'Electro-Fountain Pens'
使用“电子钢笔”的突破性纳米光刻技术
  • 批准号:
    1100900
  • 财政年份:
    2011
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Electromagnetic Pulse Induced Cutting (EPIC) of Metallic Components
EAGER/协作研究:金属部件的电磁脉冲感应切割 (EPIC)
  • 批准号:
    1103199
  • 财政年份:
    2011
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Standard Grant
EAGER: Fracture of Microelectronic Lead Free Solder Joints under Dynamic Loading Conditions
EAGER:微电子无铅焊点在动态负载条件下断裂
  • 批准号:
    0939392
  • 财政年份:
    2009
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Continuing Grant
GOALI: Effects of Processing and Microstructure on the Fracture Properties of Microelectronic Lead Free Solder Joints under Dynamic Loading Conditions
目标:加工和微观结构对动态负载条件下微电子无铅焊点断裂性能的影响
  • 批准号:
    0705734
  • 财政年份:
    2007
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Interagency Agreement
Interfacial Creep in Thin Film Interconnect Structures in Micro-Systems
微系统中薄膜互连结构的界面蠕变
  • 批准号:
    0513874
  • 财政年份:
    2005
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Continuing Grant
Interfacial Creep in Multi-Component Materials Systems
多组分材料系统中的界面蠕变
  • 批准号:
    0075281
  • 财政年份:
    2000
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Interagency Agreement
An Analytical and Experimental Study of Longitudinal Creep in Countinous Fiber Composites
无数纤维复合材料纵向蠕变的分析与实验研究
  • 批准号:
    9423668
  • 财政年份:
    1995
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Standard Grant

相似海外基金

Microstructural Evolution during Superplastic Ice Creep
超塑性冰蠕变过程中的微观结构演化
  • 批准号:
    2317263
  • 财政年份:
    2023
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Continuing Grant
Catalyst Project: Microstructural Evolution and Constitutive Modeling of Creep and Elevated Temperature Quasi-Static Tensile Deformation in Additively Manufactured Grade 91 Alloy
催化剂项目:增材制造 91 级合金蠕变和高温准静态拉伸变形的微观结构演化和本构建模
  • 批准号:
    2200613
  • 财政年份:
    2022
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Standard Grant
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2022
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Discovery Grants Program - Individual
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2021
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation of Local Creep Properties in Weld Joints of Ferritic Heat-Resistant Steels and Control of Creep Strength by Microstructural Modification
铁素体耐热钢焊接接头局部蠕变性能的评价以及通过微观结构改性控制蠕变强度
  • 批准号:
    20H02466
  • 财政年份:
    2020
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2020
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Discovery Grants Program - Individual
Atomistic and Microstructural Computational Fatigue Design and Integrated Creep-Fatigue Theory for High-Temperature Alloys
高温合金的原子和微观结构计算疲劳设计和集成蠕变疲劳理论
  • 批准号:
    RGPIN-2019-06264
  • 财政年份:
    2019
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Discovery Grants Program - Individual
A microstructural study of deformation in currently-inactive fault rocks from the San Andreas Fault Observatory at Depth pertinent to aseismic creep in central California
圣安德烈亚斯断层观测站当前不活动断层岩变形的微观结构研究,与加州中部地震蠕变相关
  • 批准号:
    1800933
  • 财政年份:
    2018
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Standard Grant
Mechanism-oriented characterization of the microstructural and load direction-dependent cyclic creep (ratcheting) behavior of the magnesium alloy WE43
镁合金 WE43 微观结构和载荷方向相关循环蠕变(棘轮)行为的机制导向表征
  • 批准号:
    317233119
  • 财政年份:
    2016
  • 资助金额:
    $ 25.22万
  • 项目类别:
    Research Grants
Microstructural creep model for superalloys under complex thermomechanical loads (C04)
复杂热机械载荷下高温合金的微观结构蠕变模型 (C04)
  • 批准号:
    211503879
  • 财政年份:
    2012
  • 资助金额:
    $ 25.22万
  • 项目类别:
    CRC/Transregios
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了