Influence of Electric Field and Stress on Diffusional Sliding at Hetero-Interfaces
电场和应力对异质界面扩散滑动的影响
基本信息
- 批准号:1309843
- 负责人:
- 金额:$ 39.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:In most micro/nano-engineered systems, multiple materials are in intimate contact with each other while being subjected to extreme thermal, mechanical and electrical loads. This results in unique scale-sensitive near-interface phenomena, such as diffusional transport along interfaces, driven by a combination of stress, thermal and electric fields. In solid materials, this causes interfacial sliding, which may cause migration of features embedded within a device, causing interfacial strain incompatibilities and potential failure. At liquid-solid interfaces, the application of an electric field can result in movement of the liquid relative to the solid via liquid electromigration (L-EM), which has potential applications in micro-fluidics, conformal coating of circuitry in micro-systems, and tip-based nano-lithography. This proposal has four objectives: (1) obtain mechanistic insight and develop a constitutive model for sliding at solid hetero-interfaces under a combination of stress, electric field and thermal gradient; (2) understand and model diffusional liquid transport at liquid-solid interfaces under a combination of electric field and thermal gradient; (3) correlate the kinetics of diffusion along solid-solid and liquid-solid interfaces to interfacial and near-interface structure and chemistry; and (4) utilize the models and insights generated to simulate the combined impact of shear stress, electromigration and thermomigration on interfacial sliding in solid-solid and liquid-solid systems of practical importance. As such, the insights obtained will be valuable for reliability of micro/nano-electronic devices, as well as for novel applications involving micro/nano-scale liquid-motion, such as tip-based nanolithography and micro-fluidics.NON-TECHNICAL SUMMARY:Micro and nano-scale devices such as those used in electronics have numerous boundaries between disparate materials that are packed very closely together. The materials within these devices are subjected to mechanical, electrical and thermal loads, causing transport of material to occur along the internal boundaries. This can cause severe reliability problems in electronics. Occasionally, when one of the materials undergoes melting due to excessive heating, the same phenomenon also causes flow of the liquid relative to the solid. This presents opportunities to exploit this phenomenon in new technologies like advanced lithography and microfluidics. In the proposed work, mechanistic insight and models for transport along both solid-solid and solid-liquid boundaries will be developed. If successful, the work will have direct impact on the reliability of next-generation electronics, as well as on the development of new manufacturing technologies such as tip-based nanolithography, thus influencing US competitiveness. The project will involve a graduate student and a postdoctoral associate in research and education, undergraduate students through Research Experience for Undergraduates, and outreach to high-school students through a science competition summer program. It will also involve international collaboration with India and collaborative activities with a national laboratory and industry. Results of the project will be broadly disseminated through faculty and student participation at meetings of learned societies.
在大多数微/纳米工程系统中,多种材料彼此紧密接触,同时受到极端的热,机械和电负载。 这导致独特的尺度敏感的近界面现象,如扩散传输沿着界面,由应力,热和电场的组合驱动。在固体材料中,这会导致界面滑动,这可能会导致嵌入器件内的特征迁移,从而导致界面应变不相容和潜在故障。 在液体-固体界面处,电场的施加可以通过液体电迁移(L-EM)导致液体相对于固体的移动,这在微流体、微系统中的电路的保形涂覆和基于尖端的纳米光刻中具有潜在的应用。 本研究的主要目的是:(1)建立应力、电场和温度梯度共同作用下固体异质界面滑移的本构模型;(2)理解和模拟电场和温度梯度共同作用下液体在液-固界面上的扩散输运;(3)将沿沿着固-固和液-固界面的扩散动力学与界面和近界面结构和化学相关联;以及(4)利用所产生的模型和见解来模拟剪切应力、电迁移和热迁移对具有实际重要性的固-固和液-固系统中的界面滑动的组合影响。因此,所获得的见解将是有价值的微/纳米电子器件的可靠性,以及涉及微/纳米尺度的液体运动,如尖端为基础的纳米光刻和micro-fluidics.NON-TECHNICAL摘要:微和纳米尺度的设备,如那些在电子产品中使用的有许多不同的材料之间的边界非常紧密地包装在一起。 这些器械内的材料承受机械、电气和热负荷,导致材料沿内部边界沿着发生输送。 这可能会导致电子产品的严重可靠性问题。 有时,当一种材料由于过度加热而熔化时,同样的现象也会导致液体相对于固体的流动。 这为在先进光刻和微流体等新技术中利用这种现象提供了机会。 在拟议的工作中,将开发沿固-固和固-液边界传输的机械见解和模型。沿着固-固和固-液边界。 如果成功,这项工作将直接影响下一代电子产品的可靠性,以及新制造技术的发展,如基于尖端的纳米光刻,从而影响美国的竞争力。 该项目将涉及一名研究生和一名博士后研究和教育助理,通过本科生研究经验的本科生,以及通过科学竞赛暑期项目向高中生推广。 它还将涉及与印度的国际合作以及与国家实验室和工业界的合作活动。 该项目的成果将通过教师和学生参加学术团体的会议广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Indranath Dutta其他文献
Microstructurally Adaptive Model for Evolution of Creep Due to Aging in SnAgCu Solder Alloys
- DOI:
10.1007/s11664-024-11701-w - 发表时间:
2025-01-06 - 期刊:
- 影响因子:2.500
- 作者:
Sri Chaitra Chavali;Sai Sanjit Ganti;Yuvraj Singh;Ganesh Subbarayan;Indranath Dutta;Mysore Dayananda - 通讯作者:
Mysore Dayananda
Deformation Behavior of Sn-3.8Ag-0.7Cu Solder at Intermediate Strain Rates: Effect of Microstructure and Test Conditions
- DOI:
10.1007/s11664-007-0316-0 - 发表时间:
2007-10-30 - 期刊:
- 影响因子:2.500
- 作者:
Xin Long;Indranath Dutta;Vijay Sarihan;Darrel R. Frear - 通讯作者:
Darrel R. Frear
Creep in multi-component materials systems
- DOI:
10.1007/s11837-003-0186-8 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:2.300
- 作者:
Indranath Dutta - 通讯作者:
Indranath Dutta
Damage Mechanisms in Through-Silicon Vias Due to Thermal Exposure and Electromigration
- DOI:
10.1007/s11664-023-10845-5 - 发表时间:
2023-12-13 - 期刊:
- 影响因子:2.500
- 作者:
Tae-kyu Lee;Hanry Yang;Indranath Dutta - 通讯作者:
Indranath Dutta
Indranath Dutta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Indranath Dutta', 18)}}的其他基金
Collaborative Research: Mechanisms and Processing Strategies for Sn Whisker Mitigation
合作研究:锡晶须缓解机制和加工策略
- 批准号:
1335491 - 财政年份:2013
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
Collaborative Research: Electromagnetic Pulse Cutting of Metallic Components
合作研究:金属部件的电磁脉冲切割
- 批准号:
1232458 - 财政年份:2012
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
A Breakthrough Nanolithography Technique Using 'Electro-Fountain Pens'
使用“电子钢笔”的突破性纳米光刻技术
- 批准号:
1100900 - 财政年份:2011
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Electromagnetic Pulse Induced Cutting (EPIC) of Metallic Components
EAGER/协作研究:金属部件的电磁脉冲感应切割 (EPIC)
- 批准号:
1103199 - 财政年份:2011
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
EAGER: Fracture of Microelectronic Lead Free Solder Joints under Dynamic Loading Conditions
EAGER:微电子无铅焊点在动态负载条件下断裂
- 批准号:
0939392 - 财政年份:2009
- 资助金额:
$ 39.6万 - 项目类别:
Continuing Grant
GOALI: Effects of Processing and Microstructure on the Fracture Properties of Microelectronic Lead Free Solder Joints under Dynamic Loading Conditions
目标:加工和微观结构对动态负载条件下微电子无铅焊点断裂性能的影响
- 批准号:
0705734 - 财政年份:2007
- 资助金额:
$ 39.6万 - 项目类别:
Interagency Agreement
Interfacial Creep in Thin Film Interconnect Structures in Micro-Systems
微系统中薄膜互连结构的界面蠕变
- 批准号:
0513874 - 财政年份:2005
- 资助金额:
$ 39.6万 - 项目类别:
Continuing Grant
GOALI: Creep and Microstructural Coarsening of Lead-Free Solders in Micro-Electronic Packaging Applications
GOALI:微电子封装应用中无铅焊料的蠕变和微观结构粗化
- 批准号:
0209464 - 财政年份:2002
- 资助金额:
$ 39.6万 - 项目类别:
Interagency Agreement
Interfacial Creep in Multi-Component Materials Systems
多组分材料系统中的界面蠕变
- 批准号:
0075281 - 财政年份:2000
- 资助金额:
$ 39.6万 - 项目类别:
Interagency Agreement
An Analytical and Experimental Study of Longitudinal Creep in Countinous Fiber Composites
无数纤维复合材料纵向蠕变的分析与实验研究
- 批准号:
9423668 - 财政年份:1995
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
相似国自然基金
Probing matter-antimatter asymmetry with the muon electric dipole moment
- 批准号:
- 批准年份:2020
- 资助金额:30 万元
- 项目类别:
相似海外基金
Enhancement of interfacial thermal transport through evanescent electric field mediated acoustic phonon transmission for efficient cooling of high power Gallium Nitride devices
通过瞬逝电场介导的声声子传输增强界面热传输,以实现高功率氮化镓器件的高效冷却
- 批准号:
2336038 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
CAREER: Securing the Future of Electric Field Measurements in Space Physics
职业:确保空间物理电场测量的未来
- 批准号:
2338825 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Continuing Grant
PFI-TT: Water disinfection using safe and sustainable copper combined with a locally enhanced electric field
PFI-TT:使用安全且可持续的铜结合局部增强电场进行水消毒
- 批准号:
2329669 - 财政年份:2024
- 资助金额:
$ 39.6万 - 项目类别:
Continuing Grant
Heat transfer to/from a droplet passing through a microchannel under an alternating electric field
在交变电场下通过微通道的液滴之间的传热
- 批准号:
23K03708 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Quantifying the Global Electric Circuit by Data Mining of Electric Field and Radar Observations from Ground Based, Airborne and Satellite Platforms
合作研究:通过地面、机载和卫星平台的电场和雷达观测数据挖掘来量化全球电路
- 批准号:
2328464 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
Standard Grant
Measurement of Electron Drift Velocity in GaN under High Electric Field
高电场下GaN电子漂移速度的测量
- 批准号:
23K13362 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of new forward osmosis process using DC electric field and nanoparticle slurry
利用直流电场和纳米颗粒浆料开发新型正向渗透工艺
- 批准号:
23K17080 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New area electron accelerator with high electric field and high Q by ultra-high frequency photonic assist accelerator
超高频光子辅助加速器高电场高Q值新领域电子加速器
- 批准号:
23H00123 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Tribology and characterization of additives under an electric field
电场下添加剂的摩擦学和表征
- 批准号:
2844636 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
Studentship
Research on the control of photon-magnon coupling state by strong gate electric field
强栅极电场控制光子-磁振子耦合态的研究
- 批准号:
22KJ1956 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows