Structure Control in Electrochemical Atomic Layer Eptiaxy

电化学原子层外延中的结构控制

基本信息

项目摘要

The long term objective of this project is to gain fundamental understanding of compound semiconductor electrodeposition and to achieve deposition of compound semiconductor thin film structures with the quality and control necessary to form optoelectronic devices. The methodology proposed for these studies is electrochemical atomic layer epitaxy (ECALE), the electrochemical analog of atomic layer epitaxy (ALE), where surface limited reactions are used to form a material, one atomic layer at a time. Underpotential deposition, upd, is another name for a surface limited electrochemical reaction. It is a phenomenon where an atomic layer of one element is deposited on a second at a potential prior to that needed to deposit the first on itself. The driving force is formation of a surface compound, and the free energy of compound formation. Using upd in an ALE cycle, deposits are formed at or near equilibrium, a monolayer at a time. An atomic layer of each element is deposited in turn, in a cycle, to form a monolayer of the compound. The number of cycles determines the thickness of the deposit. A major benefit of ECALE is that it breaks compound electrodeposition into a series of fundamental steps, allowing their independent investigation and control. ECALE studies are the most direct route to the mechanisms of compound electrodeposition. Questions to be addressed include: How much control can be obtained in the electrochemical formation of compound semiconductor device structures? What types of electrochemical reactions can be used to create an ALE cycle? Can the deposit habit be altered by using different substrate or by changing the deposition parameters? Can ternary compounds be formed? Can programs be developed to form graded deposits as buffer layers, or to help with lattice matching issues. What types of electrochemical reactions can be used to create an ALE cycle? Can doping be controlled in compound electrodeposition? Can both p and n type materials be formed? An automated flow deposition system is used to form deposits using ECALE, where potentials and solution changes are controlled by computer. Methodologies for characterization include in-situ electrochemical scanning tunneling microscopy (ECSTM), electrochemical quartz crystal microbalance (EQCM), ultrahigh vacuum electrochemistry (UHV-EC) for studies of deposit surfaces, as well as reflection, absorption, luminescence, photoelectrochemical, photoconductivity, and Hall measurements for studies of physical and electronic properties. %%% An important feature of the project is in education and human resource development through the integration of research and education. The project involves graduate and undergraduate students with participants at all levels interacting with each other and the principal investigator (PI) on a regular basis. Two of the five students working in the PI's group are from under-represented groups, and will be supported by this award. Students are actively involved in publishing papers and presenting talks and posters at professional society meetings. Most of the PI's students have over five presentations on their vitae before they graduate. It is also intended to construct a web page on ECALE, where students design and build various sections, with the intent of forming a page where the present status of ECALE can be found. The page will include descriptions of how to form deposits using ECALE, listings of publications by all groups working in the area, methodologies, instrument designs, as well as programs written in lab view for controlling deposition, accessible by anyone interested in the method. ***
该项目的长期目标是获得对化合物半导体电沉积的基本了解,并实现具有形成光电子器件所需的质量和控制的化合物半导体薄膜结构的沉积。为这些研究提出的方法是电化学原子层外延(ECALE),这是原子层外延(ALE)的电化学模拟,其中使用表面有限的反应来形成材料,一次一个原子层。欠电位沉积,UPD,是表面受限电化学反应的另一个名称。这是一种现象,一种元素的原子层被沉积在第二种元素上,其电势早于沉积第一种元素所需的电势。驱动力是表面化合物的形成,以及化合物形成的自由能。在ALE周期中使用UPD,在平衡或接近平衡时形成沉积物,一次形成一个单层。每种元素的原子层在循环中依次沉积,以形成化合物的单分子层。循环次数决定了沉积层的厚度。ECALE的一个主要好处是它将化合物电沉积分解成一系列基本步骤,允许它们独立调查和控制。ECALE研究是了解复合电沉积机理的最直接途径。需要解决的问题包括:在化合物半导体器件结构的电化学形成中可以获得多大程度的控制?可以使用哪些类型的电化学反应来创建ALE循环?是否可以通过使用不同的衬底或改变沉积参数来改变沉积习惯?三元化合物能形成吗?是否可以开发程序来形成分级沉积作为缓冲层,或者帮助解决晶格匹配问题。可以使用哪些类型的电化学反应来创建ALE循环?复合电沉积中的掺杂可以控制吗?P型和n型材料都能形成吗?一种自动流动沉积系统被用来使用ECALE形成沉积,其中电位和溶液变化由计算机控制。表征方法包括用于研究沉积表面的原位电化学扫描隧道显微镜(ECSTM)、电化学石英晶体微天平(EQCM)、超高真空电化学(UHV-EC)以及用于研究物理和电子性质的反射、吸收、发光、光电化学、光电导和霍尔测量。该项目的一个重要特点是通过研究和教育相结合的方式进行教育和人力资源开发。该项目涉及研究生和本科生,各级参与者相互交流,首席调查员(PI)定期参与。在国际扶轮小组工作的五名学生中,有两名来自代表不足的团体,并将获得该奖项的支持。学生们积极参与发表论文,并在专业学会会议上发表演讲和张贴海报。大多数PI的学生在毕业前已经在简历上做了五次以上的陈述。它还打算建立一个关于ECALE的网页,在那里学生设计和建立各种部分,目的是形成一个可以找到ECALE现状的页面。该页面将包括如何使用ECALE形成沉积的描述,在该领域工作的所有小组的出版物列表,方法,仪器设计,以及在实验室视图中编写的用于控制沉积的程序,任何对该方法感兴趣的人都可以访问。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Stickney其他文献

John Stickney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Stickney', 18)}}的其他基金

Formation of Germanene, the Ge Analog of Graphene, using Electrochemical Atomic Layer Deposition (E-ALD)
使用电化学原子层沉积 (E-ALD) 形成锗烯(石墨烯的 Ge 类似物)
  • 批准号:
    1410109
  • 财政年份:
    2014
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Continuing Grant
Condensed Phase Atomic Layer Deposition (CP-ALD)
凝聚相原子层沉积 (CP-ALD)
  • 批准号:
    1006747
  • 财政年份:
    2010
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Continuing Grant
Metal Semiconductor Interface Growth Using Electrochemical Atomic Layer Deposition (ALD)
使用电化学原子层沉积 (ALD) 进行金属半导体界面生长
  • 批准号:
    0704142
  • 财政年份:
    2007
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Continuing Grant
NER: Electrodeposition of Nanostructured Compound Semiconductors
NER:纳米结构化合物半导体的电沉积
  • 批准号:
    0210506
  • 财政年份:
    2002
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Standard Grant
Surface Chemistry Studies During Thin-Film Growth Using Electrochemical Atomic Layer Epitaxy (EC-ALE)
使用电化学原子层外延 (EC-ALE) 进行薄膜生长过程中的表面化学研究
  • 批准号:
    0075868
  • 财政年份:
    2000
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Continuing Grant
Surface Limited Reactions in the Electrochemical Atomic Layer Processing of Compound Semiconductors
化合物半导体电化学原子层加工中的表面有限反应
  • 批准号:
    9708653
  • 财政年份:
    1997
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Continuing Grant
Compound Semiconductor Electrodeposition by Electrochemical Atomic Layer Epitaxy
电化学原子层外延化合物半导体电沉积
  • 批准号:
    9400570
  • 财政年份:
    1994
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Continuing Grant
Electrochemical Atomic Layer Epitaxy
电化学原子层外延
  • 批准号:
    9017431
  • 财政年份:
    1991
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Continuing Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

NextGen Structural Biology under Electrochemical Control: Filling in Missing Intermediates in Metalloenzyme Catalytic Cycles
电化学控制下的下一代结构生物学:填补金属酶催化循环中缺失的中间体
  • 批准号:
    BB/X002624/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Research Grant
NextGen Structural Biology under Electrochemical Control: Filling in Missing Intermediates in Metalloenzyme Catalytic Cycles
电化学控制下的下一代结构生物学:填补金属酶催化循环中缺失的中间体
  • 批准号:
    BB/X002292/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Research Grant
Flash Synthesis of Cyclic and Linear Oligosaccharides Based on Precise Control of Electrochemical Reactions
基于电化学反应精确控制的环状和线性低聚糖的快速合成
  • 批准号:
    23H01961
  • 财政年份:
    2023
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an electrochemical reactor for flexible control of anion defects
开发灵活控制阴离子缺陷的电化学反应器
  • 批准号:
    22K19079
  • 财政年份:
    2022
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Control of Hydrogen Incorporation into Metals and Synthesis of Superstoichiometric Hydrides by Electrochemical Reaction
电化学反应控制氢掺入金属及超化学计量氢化物的合成
  • 批准号:
    22K04763
  • 财政年份:
    2022
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimizing Electrochemical Performance in Li-ion and Na-ion Battery Anodes through smart synthetic control and operando characterization
通过智能合成控制和操作表征优化锂离子和钠离子电池阳极的电化学性能
  • 批准号:
    2598169
  • 财政年份:
    2021
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Studentship
Corrosion Mechanism and Control of Electrode Materials for Advanced Electrochemical System
先进电化学系统电极材料腐蚀机理及控制
  • 批准号:
    RGPIN-2016-05494
  • 财政年份:
    2021
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Discovery Grants Program - Individual
New Frontiers in Metal-Organic Frameworks: Chemical, Optical, and Electrochemical Control of Pore Size/Aperture
金属有机框架的新领域:孔径/孔径的化学、光学和电化学控制
  • 批准号:
    RGPIN-2015-06625
  • 财政年份:
    2021
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Discovery Grants Program - Individual
Improvement of Z-scheme photocatalysis based on control of electron transfer utilizing electrochemical techniques
基于利用电化学技术控制电子转移的 Z 型光催化改进
  • 批准号:
    21K05240
  • 财政年份:
    2021
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Corrosion Mechanism and Control of Electrode Materials for Advanced Electrochemical System
先进电化学系统电极材料腐蚀机理及控制
  • 批准号:
    RGPIN-2016-05494
  • 财政年份:
    2020
  • 资助金额:
    $ 42.28万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了